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Chapter 1

Poisson process

1.1 Basic definition
Definition. A counting process {N(t), t ≥ 0} is said to be a Poisson process, having rate
λ > 0, if

1. N(0)=0

2. The process has independent increments

3. The number of events in any interval of length t is poisson distributed with mean λt. that
is

P{N(t+ s)−N(t) = n} = e−λt
(λt)n

n!
, ∀s, t ≥ 0, n ∈ N∗

Remark. We said that this process has rate λ, because the number of events during the time
t has mean E[N(t)] = λt.

There is alternative definition of poisson process, and it’s an easier method to check a
process is poisson.

Definition. A counting process {N(t), t ≥ 0} is said to be poisson process with rate λ if

1. N(0)=0

2. The process has stationary and independent increments .

3. P{N(h) = 1} = λh+ o(h)

4. P{N(h) ≥ 2} = o(h)

1.2 The distribution of interarrival and waiting time

1.2.1 The interarrival time

Definition. Let Xn denote the time between the (n-1)st and the nth event. {Xn, n ≥ 1} is
called the sequence of interarrival time.

Theorem 1.2.1 (Distribution of Xn). The interarrival time {Xn, n ≥ 1} of a poisson process
with rate λ, are independent identically distributed exponential random variables having mean
1/λ.
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Proof. First note that the event {X1 > t} happen if and only if no event of the poisson process
occur in the interval [0, t], and thus

P{X1 > t} = P{N(t) = 0} = e−λt

Hence X1 has an exponential distribution with mean
1

λ
.

Now we consider X2. Take condition on X1.

P{X2 > t|X1 = s} = P{0 events in (s,s+t]|X1 = s}
= P{0 event in (s,s+t]}By independent increments

= P{0 event in (0, t]}By stationary increments

= e−λt

Therefore we can see X2 is independent of X1, and is an exponential random variable mean
1

λ
.

Repeating the same argument we can get the theorem.

1.2.2 The waiting time

Definition. Let

Sn =
n∑

i=1

Xi, n ≥ 1

denote the arrival time of the nth event, also called the waiting time until the nth event.

Theorem 1.2.2 (Distribution of Sn). The distribution of Sn is

FSn(t) = P{Sn ≤ t} = P{N(t) ≥ n} =
∞∑
j=n

e−λt
(λt)j

j!

and the density function of Sn is

fSn = λe−λt
(λt)n−1

(n− 1)!

Proof. The distribution function of Sn is easy to check. To get the density function, consider

dFSn

dt
= fSn(t).

1.3 Conditional distribution of the waiting time

1.3.1 Main result

We want to know the distribution of the waiting time ( or arrival time ) Sn on the condition of
N(t) = n.

Remark. The definition of order statistics and the joint density function of the order statistics
corresponding to n independent random variables uniformly distributed on the interval (0,t)
doesn’t mention here. If you are unfamiliar to these, please read the book.
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Theorem 1.3.1. Given that N(t) = n, the n arrival times S1, · · · , Sn have the same dis-
tribution as the order statistics corresponding to n independent random variables uniformly
distributed on the interval (0,t).

Proof. Let 0 < t1 < · · · < tn < tn+1 = t, and let hi small enough so that ti + hi < ti+1, i =
1, 2, ..., n. Consider the joint density function of {Sn}, we need to make a disturbance of the
value of Sn. That is

P{ti ≤ Si ≤ ti + hi, i = 1, 2, ..., n | N(t) = n}

=
P{exactly one event in each [ti, ti + hi], and no events elsewhere in [0,t]}

P{N(t) = n}

=

∏n
i=1 λhie

−λhie−λ(t−h1−···−hn)

e−λt(λt)n/n!

=
n!

tn
h1h2 · · ·hn

Hence the joint conditional density of {Sn} is

lim
hi→0

P{ti ≤ Si ≤ ti + hi, i = 1, 2, ..., n | N(t) = n}
h1 · · ·hn

=
n!

tn

this is the same as the joint density function as the order statistics corresponding to n inden-
pendent random variables uniformly distributed on the interval (0,t).

Here is an application of this theorem.

1.3.2 An application

Example 1. Suppose that travelers arrive at a train station in accordance with a poisson
process with rate λ. If the train departs at time t, let us compute the expected sum of the
waiting times of travelers arriving in (0,t). That is

E

N(t)∑
i=1

(t− Si)


where Si is the arrival time of the ith traveler.

Solution. Clearly, we need to take condition on N(t) = n. Then

E

N(t)∑
i=1

(t− Si)

 =
∞∑
n=1

E

[
n∑

i=1

(t− Si) | N(t) = n

]
P{N(t) = n}

=
∞∑
n=1

(nt− E

[
n∑

i=1

Si|N(t) = n

]
)P{N(t) = n}

Now we counting the expectation E [
∑n

i=1 Si|N(t) = n]. By upper theorem, on condition of
N(t) = n, Si has the same distribution as the order statistics corresponding to n independent
random variables uniformly distributed on the interval (0,t). Then we have

E

[
n∑

i=1

Si|N(t) = n

]
= E

[
n∑

i=1

U(i)

]
= E

[
n∑

i=1

Ui

]
=

nt

2
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Hence

E

N(t)∑
i=1

(t− Si)

 =
∞∑
n=1

(nt−
nt

2
)P{N(t) = n} =

t

2
E [N(t)] =

λt2

2

1.4 Type-I,II Poisson process

1.4.1 Introduction and main result

In this section we consider an important class of poisson process. Consider a poisson process
with rate λ. If every events of this process can be classified as two type, namely I-type and
II-type, we said this is a two type poisson process.

Specifically, suppose that an event in poisson process occur at time s, it is classified as
being a type-I event with probability P (s) ( means that the probability of being classified as
type-I is depending on when the event occur.), and it is classified as being a type-II event with
probability Q(s). Since every event must be classified as type-I or type-II, we write (1− P (s))
instead of Q(s).

Definition. For a poisson process that has two-type, we have define N(t) as the number of
events during time t. Similarly we can define

1. N1(t) :the number of type-I events that occur by time t

2. N2(t) :the number of type-II events that occur by time t

Here we would like to know the means of N1 and N2.

Theorem 1.4.1. N1(t) and N2(t) are independent poisson random variables and having means
λtp and λt(1− p), where

p =
1

t

∫ t

0

P (s)ds

(which we can view as the average probability of begin classified as type-I during time t)

Proof. Let’s compute the joint distribution of Ni(t), i = 1, 2 by conditioning on N(t).

P{N1(t) = n,N2(t) = m}

=
∞∑
k=0

P{N1(t) = n,N2(t) = m | N(t) = k}P{N(t) = k}

= P{N1(t) = n,N2(t) = m | N(t) = m+ n}P{N(t) = m+ n}

i) Since {N(t), t ≥ 0} is a poisson process, by definition we have

P{N(t) = m+ n} = e−λt
(λt)m+n

n!

ii) Given an arbitrary event during time t, according to theorem th, we know that this
event will occur at some time uniformly distributed on (0,t).(Since the event we chosen was
arbitrary.) Hence the probability of an arbitrary event that will be classified as type-I event is

p =
1

t

∫ t

0

P (s)ds
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Since it’s independent of the other events, hence

P{N1(t) = n,N2(t) = m | N(t) = m+ n} =
(
n
r

)
pn(1− p)m

Consequently,

P{N1(t) = n,N2(t) = m} =
(
n
r

)
pn(1− p)me−λt

(λt)m+n

n!

= e−λtp
(λtp)n

n!
e−λt(1−p)

(λt(1− p))m

m!

Which implies that N1(t) is independent of N2(t), and they are poisson random variables having
respective means λtp and λt(1− p).

1.4.2 An example of two type Poisson process

Know we would like to give an example of two type Poisson process.

Example 2 (The infinite server Poisson Queue). A infinite server poisson queue is a service
system, that satisfied

1. Suppose that customer arrive at a service station which has infinite servers with a poisson
process with rate λ.

2. The service times are independent with a common distribution G.

3. the service times are independent of the arrive process.

Know fix a time t, then every customer arrived before time t can be classified as two type. That
is {

type-I customer; If it does not complete service at t.
type-II customer; If it complete his service before or equal to the time t.

And let {
N1(t); denote the number of type-I customer during the time (0, t)

N2(t); denote the number of type-II customer during the time (0, t)

We would like to compute the distribution of N1(t) and N2(t).

Solution. Suppose a customer enter this system at time s < t (Which we should view it as a
poisson event occur at time s.). Then it has the probability G(t− s) to be classified as type-I,
and has the probability 1−G(t− s) to be classified as type-II.

By the theorem above. Let

p =
1

t

∫ t

0

G(t− S)ds

then

λ1 = E[N1(t)] = λpt = λ

∫ t

0

G(t− s)ds = λ

∫ t

0

G(y)dy

λ2 = E[N2(t)] = λ(1− p)t = λ

∫ t

0

(1−G(t− s))ds = λ

∫ t

0

(1−G(y))dy

And Ni(t), i = 1, 2 is a poisson variable with means λi.
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1.5 M/G/1 Busy Period

1.5.1 Introduction of M/G/1

Front word: In the last section, we have learn a service system with infinite servers. Now we
consider a service system has only one server. Formally

Definition. M/G/1 system is

1. A server system which has exactly one server.

2. Customer arrive this service system in accordance with a poisson process with rate λ.

3. The service time of each customer are independent and identically distributed according
to a distribute function G. Also the service time independent of the arrival process.

4. If a customer arrived and the server are free, then the service will begin immediately.

5. If a customer arrived and the server are busy, then he should wait until every customer
in front of him complete the service before he began to receiving service.

6. When a customer arrive we say he enter this system. When he receiving service or waiting
for service, we say he is in the system. When he complete his service, we say he leave this
system.

We would like to know, as the server began to serve customer, when will he take a break.
That is

Definition (Busy period). When an arrival finds the server free, he began to receiving service,
and we say the busy period begins. And this busy period will ends until there is no customer
in the service system.

1.5.2 preparation of computing the distribution

In this section, our goal is to compute the distribution of the busy period. Specifically, the

P{busy period of length t, and consist of n service}

First we should find a equivalent conditions. Let

1. Sn denote the time until n additional customers have arrived.

2. {Yn} denote the sequence of service time.

Then the busy period will last a time t and will consist of n service if and only if

1. Sk ≤ Y1 + · · ·+ Yk, forall k = 1, · · · , n− 1

2. Y1 + · · ·+ Yn = t

3. There are n− 1 arrivals during the time (0, t).
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(i) ensure the busy time won’t end until the busy time containing n service.
Hence we have

P{busy period of length t, and consist of n service}
=P{Y1 + · · ·+ Yn = t, n− 1 arrivals in (0,t), Sk ≤ Y1 + · · ·+ Yk, k = 1, 2, · · · , n− 1}
=P{Sk ≤ Y1 + · · ·+ Yk, k = 1, · · · , n− 1 | n− 1 arrivals in (0,t), Y1 + · · ·+ Yn = t}
×P{n− 1 arrivals in (0,t), Y1 + · · ·+ Yn = t}

It’s easy to calculate the probability

P{n− 1 arrivals in (0,t), Y1 + · · ·+ Yn = t}

But the probability

P{Sk ≤ Y1 + · · ·+ Yk, k = 1, · · · , n− 1 | n− 1 arrivals in (0,t), Y1 + · · ·+ Yn = t}

require some lemma, without proving them, that is

Lemma 1.5.1. Let Y1, · · · , Yn be independent and identically distributed nonnegative random
variables. Then

E[Y1 + · · ·+ Yk | Y1 + · · ·+ Yn = y] =
k

n
y

Lemma 1.5.2. Let {U(i)} denote the ordered values from a set of n independent uniform
random variables on (0, t). Y1, · · · , Yn be independent and identically distributed nonnegative
random variables, and are also independent of {U(i)}. Then when 0 < y < t

P{Y1 + · · ·+ Yk ≤ U(k), k = 1, 2, · · · , n | Y1 + · · ·+ Yn = y} = 1− y/t

Lemma 1.5.3. Let {U(i)} denote the ordered values from a set of n− 1 independent uniform
random variables on (0, t). Y1, · · · , Yn be independent and identically distributed nonnegative
random variables, and are also independent of {U(i)}. Then

P{Y1 + · · ·+ Yk ≤ U(k), k = 1, 2, · · · , n− 1 | Y1 + · · ·+ Yn = y} = 1/n

The proof of them is quite long, if you’re interesting in it, see the textbook on page 77.

1.5.3 Distribution of busy period

In the last subsection, we have

P{busy period of length t, and consist of n service}
=P{Sk ≤ Y1 + · · ·+ Yk, k = 1, · · · , n− 1 | n− 1 arrivals in (0,t), Y1 + · · ·+ Yn = t}
×P{n− 1 arrivals in (0,t), Y1 + · · ·+ Yn = t}

The second probability

P{n− 1 arrivals in (0,t), Y1 + · · ·+ Yn = t}
=P{n− 1 arrivals in (0,t)}P{Y1 + · · ·+ Yn = t}♡

=e−λt
(λt)n−1

(n− 1)!
dGn(t) (where Gn is the n− fold convolution of G)

The step ♡ is because the arrival process independent of the service time.
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The first probability is

P{Sk ≤ Y1 + · · ·+ Yk, k = 1, · · · , n− 1 | n− 1 arrivals in (0,t), Y1 + · · ·+ Yn = t} = 1/n

by the lemma above.
(The detail proof of this probability is on the book, since I think this section is not that

important in the final exam, hence in this section I don’t want to spend much time in these
complex proof of the lemmas.)

So if we let B(t, n) = P{busy period is of length ≤ t, n customers served in a busy period},
then

d

dt
B(t, n) = e−λt

(λt)n−1

n!
dGn(t)

More over

B(t, n) =

∫ t

0

e−λt
(λt)n−1

n!
dGn(t)

1.6 Poisson process with a variable rate

1.6.1 Definition of conditional poisson process

Front word: Recall that in the former section, the Poisson process we’ve mention all have a
constant rate λ. In this section we will consider a special poisson process that it’s rate which
is a positive random variable having distribution G.

Formally, Let Λ be a positive variable having distribution G, and let {N(t), t ≥ 0} be a
counting process such that, given that Λ = λ, {Nλ(t), t ≥ 0} is a poisson process having rate
λ. Thus

P{N(t+ s)−N(s) = n} =

∫ ∞

0

e−λt
(λt)n

n!
dG(λ)

We call the process {N(t), t ≥ 0} is a conditional poisson process. (that’s because if you
take condition on Λ = λ, then the conditional process is a poisson process with rate λ.)

Property of conditional poisson process

1. It does have stationary increments.

2. It does not must have independent increments.

Proof. (i) is easy to check. We now show that it does not have independent increments.
Consider the a random time t1 and t2. It’s suffice to show that

P{N(t1)−N(0) = 0}P{N(t2)−N(t1) = 0} ≠ P{N(t1)−N(0) = 0, N(t2)−N(t1) = 0}

since
P{N(t1)−N(0) = 0} =

∫ ∞

0

e−λt1dG(λ)

and
P{N(t2)−N(t1) = 0} =

∫ ∞

0

e−λ(t2−t1)dG(λ)

P{N(t1)−N(0) = 0, N(t2)−N(t1) = 0} = P{N(t2) = 0} =

∫ ∞

0

e−λt2dG(λ)

Hence it’s not independent increments.
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1.6.2 Conditional distribution of Λ on N(t)

We would like to discuss the distribution of the rate on the condition of N(t) = n. For a small
dλ.

P{Λ ∈ (λ, λ+ dλ) | N(t) = n}

=
P{N(t) = n | Λ ∈ (λ, λ+ dλ)}P{Λ ∈ (λ, λ+ dλ)}

P{N(t) = n}

=
e−λt

(λt)n

n!
dG(λ)∫∞

0
e−λt

(λt)n

n!
dG(λ)

and so the conditional distribution of Λ, given that N(t) = n, is

P{Λ ≤ x | N(t) = n} =

∫ x

0
e−λt

(λt)n

n!
dG(λ)∫∞

0
e−λt

(λt)n

n!
dG(λ)

1.6.3 An example of conditional poisson process

Example 3. Suppose an process {N(t), t ≥ 0} is a poisson process with rate either λ1 or λ2

with probability p to be the rate of λ1, and with probability 1− p to be the rate of λ2. Now if
there is n event arrived during time t, what’s the probability of it’s the rate λ1.

Solution. Let Λ be a random variable that is either λ1 or λ2 with the probability p and 1− p
respectively. What we should compute is

P{Λ = λ1 | N(t) = n}

By the method above,

P{Λ = λ1 | N(t) = n}

=
P{N(t) = n | Λ = λ1}P{Λ = λ1}

P{N(t) = n}

=
e−λ1t

(λ1t)
n

n!
p

e−λ1t
(λ1t)

n

n!
p+ e−λ2t

(λ2t)
n

n!
(1− p)

Similarly we can compute P{Λ = λ2 | N(t) = n}

1.7 Exercise
Exercise 1.7.1. Proof these two definition are equivalent.

poisson process: A counting process {N(t), t ≥ 0} is said to be a poisson process, having
rate λ > 0, if

1. N(0)=0
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2. The process has independent increments

3. The number of events in any interval of length t is poisson distributed with mean λt. that
is

P{N(t+ s)−N(t) = n} = e−λt
(λt)n

n!
, ∀s, t ≥ 0, n ∈ N∗

poisson process: A counting process {N(t), t ≥ 0} is said to be poisson process with
rate λ if

1. N(0)=0

2. The process has stationary and independent increments .

3. P{N(h) = 1} = λh+ o(h)

4. P{N(h) ≥ 2} = o(h)

Solution. Here we only prove 2○ → 1○.
(a): We prove that p0(t+ s) = p0(t)p0(s).

p0(t+ s) :=P{N(t+ s) = 0}
=P{N(t+ s)−N(s) | N(s) = 0}P{N(s) = 0}
=P{N(t) = 0}P{N(s)}
=p0(t)p0(s)

(b): We prove the interarrival times Xn are independent exponential random variables with

mean
1

λ
. Since P{X1 > t} = P{N(t) = 0} = p0(t), and

p0(t+ h) = p0(h)p0(t)

⇒p0(t+ h) = (1− λh+ o(h))p0(t)

⇒p0(t+ h)− p0(t) = −λhp0(t) + o(h)

⇒p′0(t) = −λp0(t)

⇒p0(t) = e−λt

Hence X1 is exponential random variable with mean
1

λ
.More over,

P{X2 > t | X1 = s} = P{N(t+ s)−N(s) = 0 | X1 = s}
= P{N(t+ s)−N(s) = 0} (independent increments)

= p0(t) (stationary increments)

= e−λt

Hence X2 is independent of X1 and is exponential random variable with mean
1

λ
. Repeat this

method, we get the proposition (b).
(c): We prove N(t) is a poisson random variable with mean λt.

P{N(t) ≥ n}
=P{X1 + · · ·+Xn ≤ t}

=
∞∑
j=n

e−λt
(λt)j

j!
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Hence P{N(t+ s)−N(s) = n} = e−λt
(λt)n

n!
.

Exercise 1.7.2. For a poisson process, show that for s < t,

P{N(s) = k | N(t) = n} =

(
n

k

)
(
s

t
)k(1−

s

t
)n−k, k = 0, 1, · · · , n

Proof. Let {Ui} denote n independent random variables uniformly distributed on the interval
(0, t). And {U(i)} are the order statistics of {Ui}. By the theorem 1.3.1,

P{N(s) = k | N(t) = n} = P{Sk ≤ s, Sk+1 > s | N(t) = n}
= P{U(k) ≤ s, U(k+1) > s}

=

(
n

k

)
(
s

t
)k(1−

s

t
)n−k

And we get the result.

Exercise 1.7.3. The number of trails to be performed is a poisson random variables with mean
λ. Each trails has n possible outcomes, number i with probability pi,

∑n
i=1 = 1. Let Xj denote

the number of outcomes that occur exactly j times, compute

E[Xj] and Var(Xj)

Solution. Let Yi denote the number of the occurrence of the ith outcome. Form theorem 1.4.1,
{Yi} are independent poisson variables with mean λpi. If we let

Ii =

{
1 the ith result occur exactly j times
0 else

Then Xj =
∑n

i=1 Ii, and

E[Xj] =
n∑

i=1

E[Ii] =
n∑

i=1

P{Yi = j} =
n∑

i=1

e−λpi
(λpi)

j

j!

And

Var(Xj) =
n∑

i=1

Var(Ii)♡ =
n∑

i=1

P{Yi = j}(1− P{Yi = j})♡

1. The first ♡ here is because Ii and Ij are independent when i ̸= j.

2. The second ♡ here is because In is a 0−1 distribution, and the variance of it is p(1−p).



Chapter 2

Renewal process

2.1 Basic definition
We know that the interarrival times for the Poisson process are independent and identically
distribute exponential random variable. Now the renewal process generalize it to an arbitrary
distribution.

Definition. Let {Xn : n = 1, 2, · · · } be a sequence of nonnegative independent random variable
with common distribution F . If we interpret Xn as the time between the (n − 1)st and nth
even. Then Sn =

∑n
i=1Xi is the time of the nth event. The counting process

N(t) = sup{n : Sn ≤ t}

is called a renewal process.

Remark. To avoid the trivialities suppose, we often suppose that F (0) = P{Xn = 0} < 1.

Here is some notation we may usually use.

Definition. :

1. µ = E [Xn] =
∫∞
0

xdF (x) denote as the mean time between successive events.

2. m(t) = E [N(t)] is called the renewal function

3. Fn is the distribution function of Sn, which is the n-fold convolution of F with itself.

4. SN(t) the time of the last renewal prior to or at the time t.

5. SN(t)+1 the time of the first renewal after time t. (cannot be equal to.)

It’s easy to check the relation of them :

Theorem 2.1.1. :

1. By the strong law of the large numbers, with probability 1, we have

lim
n→∞

Sn

n
= µ

2. P{N(t) = n} = Fn(t)− Fn+1(t)

14
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3. m(t) =
∑n

i=1 Fn(t)

4. SN(t) ≤ t < SN(t)+1

Proof. we only prove (3) here. Let

In =

{
1, if the nth renewal occurred in [0,t]
0, otherwise

(2.1)

then N(t) =
∑∞

n=1 In. Hence

E [N(t)] = E

[
∞∑
n=1

In

]

=
∞∑
n=1

E [In] (♡)

=
∞∑
n=1

P{In = 1}

=
∞∑
n=1

Fn(t)

Remark. Explain of the step (♡). By Levi monotonic convergence theorem, we know that if
{fn} is a monotone sequence of nonnegative measurable functions. fn → f a.e, then

lim
n→∞

∫
Ω

fndx =

∫
Ω

fdx

Hence if {fn} are nonnegative measurable functions, then∫
Ω

∞∑
n=1

fndx =
∞∑
n=1

∫
Ω

fndx

That why we can interchange of expectation and summation, because {In} is nonnegative.

2.2 Limit Theorems

2.2.1 some limit theorems

About how many renewals can occur in finite/infinite time, we have

Theorem 2.2.1. :

1. It can’t occur an infinite number of renewals in a finite time.

2. It must occur an infinite number of renewals in an infinite time. In other words N(∞) = ∞
(with the probability 1).

3. The expectation of N(t), E[N(t)] = m(t) < ∞, if 0 ≤ t < ∞.
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Proof. i) By 1, we know that
Sn

n
→ µ as n → ∞

hence Sn must be going to infinity as n goes to infinity. Thus , for a finite time t, Sn can be
less than or equal to t for at most a finite number of values of n. Since N(t) = sup{n : Sn ≤ t},
we know that N(t) must finite. And we can write N(t) = max{n : Sn ≤ t} when the time are
finite.

ii) It’s equal to prove that P{N(∞) < ∞} = 0. We have

P{N(∞) < ∞} = P{Xn = ∞,for some n}

= P{
∞⋃
n=1

{Xn = ∞}}

≤
∞∑
n=1

P{Xn = ∞}

= 0

iii) Since F (0) = P{Xn = 0} < 1, there is an α > 0, such that P{Xn ≥ α} > 0. Now we
can consider a related renewal process {Xn, n = 1, 2, · · · } by

Xn =

{
0 if Xn < α

α if Xn ≥ α

then this process can only renewals at times t = nα, n = 1, 2, · · · . And the number of renewals
at each of these times are independent geometric random variables with mean

1

P{Xn ≥ α}

Thus these renewal points of time only

[
t

α

]
. Hence

E [N(t)] ≤ E
[
N(t)

]
≤

[
t

α

]
1

P{Xn ≥ α}
< ∞

Now we consider the rate at which N(t) and E [N(t)] grows.

Theorem 2.2.2. :

1. with probability 1,
N(t)

t
→

1

µ
as t → ∞

2. with probability 1,
m(t)

t
→

1

µ
as t → ∞
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Proof. (i) Since SN(t) ≤ t < SN(t)+1, we see that

SN(t)

N(t)
≤

t

N(t)
<

SN(t)+1

N(t)

Since N(t) → ∞ when t → ∞,
SN(t)

N(t)
→ µ when N(t) → ∞, we can conclude that

SN(t)

N(t)
→ ∞

when t → ∞. More over
SN(t)

N(t)
=

SN(t)

N(t) + 1

N(t) + 1

N(t)

by the same reasoning,
SN(t)+1

N(t)
→ µ when t → ∞. Hence we get that

N(t)

t
→

1

µ
as t → ∞.

Remark. :
i) All ” → ∞” or ” → µ” are under the meaning of with the probability 1.

ii) For this reason we call
1

µ
is the rate of the renewal process.

2.2.2 preparation of proving the elementary renewal theorem

Before proving
m(t)

t
→

1

µ
as t → ∞, we need some preparation.

Definition. An integer-valued random variable N is said to be a stopping time for the
sequence {Xn}. If the event {N = n} is independent of Xn+1, Xn+2, · · · .

Theorem 2.2.3 (Wald equation). If {Xn} are independent and identically distributed random
variables having finite expectation, and if N is a stopping time for {Xn}, and E [N ] < ∞, then

E

[
N∑

n=1

Xn

]
= E [N ]E [X]

Proof. Letting

In =

{
1 if N ≥ n

0 if N < n
(2.2)

then
∑N

n=1Xn =
∑∞

n=1XnIn Hence,

E

[
N∑

n=1

|Xn|

]
= E

[
∞∑
n=1

|Xn|In

]
=

∞∑
n=1

E [|Xn|In]
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Since In is independent of Xn we thus obtain

E

[
N∑

n=1

|Xn|

]
=

∞∑
n=1

E [|Xn|In]

= E [|Xn|]
∞∑
n=1

E [In] (♡)

= E [|Xn|]
∞∑
n=1

P{N ≥ n}

= E [|X|]E [N ]

Since E [|X|]E [N ] < ∞(♡), by dominated convergence theorem, we can conclude that

E

[
N∑

n=1

Xn

]
=

∞∑
n=1

E [XnIn]

= E [Xn]
∞∑
n=1

E [In]

= E [Xn]
∞∑
n=1

P{N ≥ n}

= E [X]E [N ]

Remark. The first ♡ is because the Levi monotonic convergence theorem. And the second ♡
is because the definition of expectation that X exist finite expectation if and only if |X| exist
finite expectation.

Example 4. If Xn, n = 1, 2, · · · are independent variables such that

P{Xn = 1} = P{Xn = 0} =
1

2

then
N = min{n : X1 + · · ·+Xn = 10}

is a stopping time.

By Wald equation, E [X1 + · · ·+XN ] =
1

2
E [N ]. By definition, X1 + · · · + XN = 10, so

E [N ] = 20.

Corollary 2.2.4. An important use of stopping time is that we consider {Xn} are the inter-
arrival times of a renewal process. Then N = N(t) + 1 is a stopping time for the sequence of
{Xn}. By Wald equation, we have

E
[
X1 + · · ·+XN(t)+1

]
= E[X]E[N(t) + 1]

or equivalently
E
[
SN(t)+1

]
= E[X]E[N(t) + 1] = µ[m(t) + 1].
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2.2.3 proof of the elementary renewal theorem

Theorem 2.2.5 (The elementary renewal theorem). For an renewal process {N(t), t ≥ 0},
with interarrival time sequence {Xn}, µ = E[Xn], m(t) = E[N(t)]

m(t)

t
→

1

µ
as t → ∞.

Proof. We will prove this theorem by proving that

lim
t→∞

inf
m(t)

t
≥

1

µ
and lim

t→∞
sup

m(t)

t
≥

1

µ

(a): Suppose µ < ∞. Since
SN(t+1) > t, E[SN(t)+1] > t

By the corollary 2.2.4,

µ(m(t) + 1) > t

⇒
(m(t) + 1

t
>

1

µ

⇒ lim
t→∞

inf
m(t)

t
≥

1

µ

(b): Fix a constant M > 0, define a new renewal process with interarrival time sequence {Xn}
as

Xn =

{
Xn if Xn ≤ M

M if Xn ≥ M

Then Sn =
∑n

i=1Xn, and N(t) = {n : Xn ≤ t} defines a new renewal process. We obtain

SN(t)+1 ≤ t+M

Hence by corollary 2.2.4 again
(m(t) + 1)µ ≤ t+M

Thus

lim
t→∞

sup
m(t)

t
≤

1

µ

It’s easy to see that N(t) ≤ N(t), therefore m(t) ≤ m(t). Moreover

lim
M→∞

µ = µ

then we get the result.

2.3 The key renewal process

2.3.1 Main result

Here are the main result in this section
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Definition. A nonnegative random variable X is said to be lattice, if X can only takes on
integral multiples of some nonnegative number d. Then we can also say the distribution function
F of X is lattice. The largest d having this property is said to be the period of X.

Theorem 2.3.1 (Blackwell’s Theorem). For a renewal process, F is the distribution function
of it’s interarrival time X.µ = E[X],m(t) = E[N(t)] =

∑∞
n=1 Fn. Then

1. If F is not lattice, then

m(t+ a)−m(t) →
a

µ
as t → ∞

for all a ≥ 0.

2. If F is lattice, with period d, then

E[number of renewals at nd] →
d

µ
as t → ∞

Definition. h(t) be a function defined on [0,∞], for any a > 0, let mn(a) be the supremum
and mn(a) be the infinum of h(t) over the interval (n− 1)a ≤ t ≤ na. We say that h is directly
Riemann integrable if

∑∞
n=1mn(a) and

∑∞
n=1mn(a) are finite for all a > 0, and

lim
a→0

a
∞∑
n=1

mn(a) = lim
a→0

∞∑
n=1

mn(a)

Theorem 2.3.2 (A sufficient condition for directly Riemann integrable). h is Riemann inte-
grable if

1. h(t) ≥ 0 for all t ≥ 0.

2. h(t) is non increasing.

3.
∫∞
0

h(t)dt < ∞

Theorem 2.3.3 (The key renewal theorem). For a renewal process, with it’s interarrival time
has distribution function F . If F is not lattice, and h(t) is directly Riemann integrable, then

lim
t→∞

∫ t

0

h(t− x)dm(x) =
1

µ

∫ t

0

h(t)dt

where µ = E[X],m(t) = E[N(t)].

Recall that
1

µ
is the rate of the renewal process.

Lemma 2.3.4. For a renewal process

P{SN(t) ≤ s} = F (t) +

∫ s

0

F (t− y)dm(y) t ≥ s ≥ 0.

Corollary 2.3.5. :

1. P{SN(t) = 0} = F (t)
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2. dFSN(t)
(y) = F (t− y)dm(y)

Explain: Since we have

dm(y) =
∞∑
n=1

fn(y)dy

=
∑
n=1

P{nth renewal occurs in (y,y+dy)}

=P{renewal occurs in (y,y+dy)}

So when FSN(t)
is continuous, the probability density of SN(t) is

fSN(t)
(y)dy = P{renewal in(y, y + dy), next interarrival > t− y}

= dm(y)F (t− y)

2.3.2 alternating renewal process

Consider a system that can be in one of two states: "on" or "off". Initially it is "on". Now
suppose the time of it remain "on" is a random variable Z1, then "off" for a time Y1, then "on"...
And then we get a sequence of random variables {Zn} representing each "on" remaining time ,
and a sequence of random variables {Yn} representing each "off" remaining time. We allow Zn

and Yn to be dependent. Let H be the distribution function of {Zn}, and G be the distribution
function of {Yn}, F be the distribution function of Zn + Yn.

Now we would like to now the probability of it’s "on" at the time t. That is

P (t) = P{on at time t}

Theorem 2.3.6. If E[Z + Y ] < ∞, and F is not lattice, then

lim
t→∞

P (t) =
E[Zn]

E[Zn] + E[Yn]

Proof. We can view Xn = Zn+Yn be the interarrival time sequence, then it’s a renewal process
if we let Sn =

∑n
i=1Xi, N(t) = {n : Sn ≤ t}. We want to know whether it’s "on" or "off" at

the time t. We can take condition of the last renewal time before t, that is

P (t) =P{on at t | SN(t)=0}P{SN(t)=0}

+

∫ t

0

P{on at t | SN(t) = y}dFSN(t)
(y)

Now
P{on at t | SN(t)=0} = H(t)/F (t)

and
P{on at t | SN(t)=y} = H(t− y)/F (t− y)

by corollary 2.3.5
dFSN(t)

= dm(y)F (t− y)

Hence we have

P (t) = H(t) +

∫ t

0

H(t− y)dm(y)
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By key renewal theorem 2.3.3

lim
t→∞

P (t) =

∫∞
0

H(t)dt

µ
=

E[Z]

E[Z + Y ]

Here is an example of alternating renewal process

Example 5. Suppose that customers arrive at a store, which sells only one commodity. The
arrival process is a renewal process with the distribution function F of it’s interarrival time.
Suppose F is not lattice. The amounts desired by the customers are assumed to be independent
with a common distribution G. The store uses the following (s, S) policy: That is

1. If the inventory level after serving a customer is below s, then the server will add the
commodity to the amount of S.

2. Otherwise the server will not add the commodity.

Let X(t) denote the inventory level of time t, and X(0) = S, we want to know the probability
P{X(t) ≥ x} when t → ∞, .

Solution. We said this system is "on" whenever the inventory level is more than or equal to
x, and is "off" otherwise. By the theorem above, we know

lim
t→∞

P{X(t) ≥ x} = lim
t→∞

P{on at time t}

=
E[time of the inventory ≥ x in a cycle]

E[time of a cycle]

Let Y1, Y2, · · · denote the demand of the arrived customer in a cycle and

Nx = min{n : Y1 + · · ·+ Yn > S − x}

Ns = min{n : Y1 + · · ·+ Yn > S − s}
Then the

amount of "on" time in a cycle =
Nx∑
i=1

Xi

time of a cycle =
Ns∑
i=1

Xi

As we can check Nx and Ns are a stopping time of {Xi}, hence by Wald equation 2.2.3, we
have

lim
t→∞

P{X(t) ≥ x} =
E[
∑Nx

i=1 Xi]

E[
∑Ns

i=1 Xi]
=

E[Nx]

E[Ns]

To counting the expectation E[Nx], suppose that {Yn} is a interarrival time of a renewal process
{N(t), t ≥ 0}. Then

N(S − x) = max{n : Y1 + · · ·+ Yn ≤ S − x} = Nx − 1

Hence
E[Nx − 1] = E[N(S − x)] = mG(S − x)

Where mG(t) =
∑∞

n=1Gn(t), and Gn is n-fold of G. Hence

lim
t→∞

P{X(t) ≥ x} =
mG(S − x) + 1

mG(S − s) + 1
s ≤ x ≤ S
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Example 6 (excess life and age). Suppose there is a renewal process, with the interarrival time
is not lattice. Let

1. Y (t) = SN(t)+1 − t denote the time from t to the next renewal.

2. A(t) = t− SN(t) denote the time from t since the last renewal.

Y (t) is called the excess time and A(t) is called the age. Know we want to compute the
probability P{A(t) ≤ x}.

To use the alternating renewal process, we say the system is "on" at time t if the age at t
is less than or equal to x, and "off" otherwise. Then

lim
t→∞

P{A(t) ≤ x} = lim
t→∞

P{on at t}

=
E[min(X, x)]

E[X]
♡

=

∫∞
0

P{min(x,X) > y}dy
E[X]

=

∫ x

0
F (y)dy

µ

♡ here is because the open time in each cycle is

{
x if x < X

X if x ≥ X
, where X is the time of a

cycle, which equal to the interarrival time of the renewal process.

Example 7 (The distribution of XN(t)+1). Still consider a renewal process with interarrival
time sequence {Xn}.

Sn =
n∑

i=1

Xn

XN(t)+1 = SN(t)+1 − SN(t)

One may thought the distribution of XN(t)+1 is just as the distribution of X, which is F .
However it might be wrong. In the exercises we will prove that P{XN(t)+1} ≥ F (x).

Now we want to get the limiting distribution of XN(t)+1. We have

P{XN(t)+1 > x} = P{length of renewal interval containing t > x}

To use the alternating renewal process, again let an on-off cycle correspond to a renewal interval.
That is, if the length of a renewal interval is greater than x, we say it’s "on" in the whole cycle,
otherwise, it’s "off" in the whole cycle. Then each cycle either "on" at all or "off" at all. Now

lim
t→∞

P{XN(t)+1 > x} = lim
t→∞

P{length of renewal interval containingt > x}

= lim
t→∞

P{on at time t}

=
the expectation of the time of it’s on in a cycle

the expectation of the time of a cycle

=
E[X > x]

µ

=

∫∞
x

ydF (y)

µ
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Until now we still don’t know the distribution of XN(t)+1, However, if we have know the
exact time of SN(t), then

{XN(t)+1 > y | SN(t) = s}

has the same distribution with

{X > y | X > t− s, renewal at s}

We will use this property in the next section and exercise. See 2.6.3

2.4 Delayed renewal process
We often consider a counting process for which the first interarrival time has a different distri-
bution from the remaining ones. Formally, let

1. {Xn, n ≥ 1} be a sequence of independent nonnegative random variables with X1 having
distribution G, and others having distribution F .

2. Let Sn =
∑n

i=1Xi.

3. ND(t) = {n : Sn ≤ t}, then {ND(t), t ≥ 0}

To distinguish delayed renewal process and renewal process, we often add a subscript D.

Definition. :

1. The counting process {ND(t), t ≥ 0} defined above is called a delayed renewal process.

2. mD(t) := E[ND(t)]

3. µ denote as the expectation of Xj, J ≥ 2, that is

µ =

∫ ∞

0

xdF (x)

Familiar to the result in former section, it’s easy to get

Proposition 2.4.1. For a delayed renewal process {ND(t), t ≥ 0}, with the first interarrival
time has distribution G, and others have distribution F , we have:

1. The distribution of Sn is G ∗ Fn−1, which means the convolution of G and (n− 1) F .

2. The distribution of ND(t) is

P{ND(t) = n} = G ∗ Fn−1(t)−G ∗ Fn(t)

3. mD(t) =
∑∞

n=1 G ∗ Fn−1

And by the same way we can get a key renewal theorem in delayed renewal process

Theorem 2.4.2. For a delayed renewal process, with probability 1, we have

1.
ND(t)

t
→

1

µ
as t → ∞
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2.
mD(t)

t
→

1

µ
as t → ∞

3. If F is not lattice, then

mD(t+ a)−mD(t) →
a

µ
as t → ∞

4. If F is lattice with period d, then

E[number of renewals at nd] →
d

n
as n → ∞

5. If F is not lattice, µ < ∞, and h is a directly R-integrable function, then∫ ∞

0

h(t− x)dmD(x) →
∫
0

∞h(t)dt/µ

2.5 Renewal Reward Process
Definition. Consider a renewal process, with the interarrival time sequence {Xn}, and it’s
distribution function F . Suppose that each time a renewal occur and we receive a reward,
which denote by Rn the reward earned at the time of the nth renewal. Usually we allow the
Rn, n ≥ 1 are independent and identically distributed, but depend on Xn, the length of the nth
renewal interval, that is (Xn, Rn) are independent and identically distributed. And such this
renewal process is called the renewal reward process.

Let

R(t) =

N(t)∑
n=1

Rn, E[R] = E[Rn], µ = E[X] = E[Xn]

which represents the total reward earned by time t. We would like to know the relation between
them.

Theorem 2.5.1. If E[R] < ∞, E[X] < ∞, then

1. with probability 1
R(t)

t
→

E[R]

E[X]
as t → ∞

2. with probability 1
E[R(t)]

t
→

E[R]

E[X]
as t → ∞

Proof. (i) Since
R(t)

t
=

∑N(t)
n=1 Rn

t
=

∑N(t)
n=1 Rn

N(t)
·
N(t)

t

We know that when t → ∞, N(t) → ∞. Hence by strong law of large numbers, we obtain that

N(t)∑
n=1

Rn/N(t) → E[R] as t → ∞
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and by the theorem2.2.2, we have

N(t)

t
→

1

µ
=

1

E[X]
as t → ∞

Thus (i) is proven.
(ii) Just as the proof of the elementary renewal theorem, we found out that the random

variable N = N(t) + 1 is the stopping time of {Rn}. By Wald’s equation we have

E[

N(t)∑
n=1

Rn] = E[

N(t)+1∑
n=1

Rn]− E[RN(t)+1] = (m(t) + 1)E[R]− E[RN(t)+1]

Hence
E[R(t)]

t
=

m(t) + 1

t
E[R]−

E[RN(t)+1]

t

It’s easy to see

lim
t→∞

m(t) + 1

t
E[R] =

E[R]

E[X]

Therefore our goal is to prove that

E[RN(t)+1]/t → 0 as t → ∞

Let

g(t) : = E[RN(t)+1]

= E[RN(t)+1 | SN(t) = 0]F (t) +

∫ t

0

E[RN(t)+1 | SN(t) = s]F (t− s)dm(s)

= E[R1 | X1 > t]F (t) +

∫ t

0

E[R | X > t− s]F (t− s)dm(s)

Let
h(t) := E[R1 | X1 > t]F (t) =

∫ ∞

t

E[R | X = x]dF (x)

Since
E[|R|] =

∫ ∞

0

E[|R| | X = x]dF (x) < ∞

So |h(t)| < E[|R|], and limt→∞ h(t) = 0, which means ∀ε > 0,∃T > 0, when t > T, |h(t)| < ε.
Hence when t > T

|g(t)|
t

≤
|h(t)|
t

+

∫ t

0

|h(t− s)|
t

dm(s)

≤
ε

t
+

∫ t−T

0

|h(t− s)|
t

dm(s) +

∫ t

t−T

|h(t− s)|
t

dm(s)

≤
ε

t
+

ε

t
m(t− T ) + E[|R|]

m(t)−m(t− T )

t
→ 0 as t → ∞

Above we have prove this theorem.
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In the last section we have know that the distribution of XN(t) is not as the same with
distribution of {Xn} in general cases. Since RN(t) is related to XN(t), thus the distribution of
RN(t) should not as the same with {Rn}.

Above we just assume that the reward is received all at once at the end of the renewal cycle.
However if the reward is earned gradually during the renewal cycle. This theorem remain true.
To see this, we have ∑N(t)

n=1 Rn

t
≤

R(t)

t
≤
∑N(t)

n=1 Rn

t
+

RN(t)+1

t

Where R(t) represent the reward earned during the time t, but not R(t) =
∑N(t)

n=1 Rn.

Example 8. For a random renewal process which has the interarrival time sequence {Xn}. Let
A(t) be the age at t of this renewal process, which is t− SN(t), and let Y (t) be the recess time
at t, which is SN(t)+1 − t. We want to know the limit

lim
t→∞

∫ t

0
A(s)ds

t

and

lim
t→∞

∫ t

0
Y (s)ds

t

Solution. Assume we received a reward A(t) at the time t, then R(t) =
∫ t

0
A(s)ds. By the

theorem above ∫ t

0
A(s)ds

t
→

E[reward during a renewal cycle]
E[time of a renewal cycle]

Since

E[reward during a renewal cycle] =
∫ X

0

sds =
X2

2

Then ∫ t

0
A(s)ds

t
→

E[X2]

2E[X]

Just as the same method, we can get ∫ t

0
Y (s)ds

t
→

E[X2]

2E[X]

2.6 Exercises
Exercise 2.6.1. For a renewal process, Verify that is these proposition true or false

1. N(t) < n if and only if Sn > t

2. N(t) ≤ n if and only if Sn ≥ t

3. N(t) > n if and only if Sn < t

Solution. :

1. true.

2. false. Since Sn = t, needn’t have N(t) ≤ n, because the Xn+1 may equals to zero.
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3. false. By the same reasoning above. Suppose N(t) > n, there might be Sn = t and
Xn+1 = 0.

Exercise 2.6.2. For a renewal process, suppose the distribution function of the interarrival
time F , satisfy F (∞) = P{X < ∞} < 1, that is the probability P{X = ∞} > 0. Then
after each renewal, there is a probability 1−F (∞) that makes the process will no have further
renewal. Prove that in this situation the total number of renewals, call it N(∞), is such that
1 +N(t) has a geometric distribution with mean 1/(1− F (∞))

Solution. We have

P{N(∞) = k}
=P{the former k-1 interarrival time is finite, and the kth interarrival time is infinite}
=F (∞)k(1− F (∞))

Hence

P{1 +N(∞) = k} = P{N(∞) = k − 1}
= F (∞)k−1(1− F (∞))

Here we have proved the proposition.

Exercise 2.6.3. Prove that P{XN(t)+1 > x} ≥ F (x), and calculate that when F (x) = 1−e−λx,
what’s the P{XN(t)+1 > x}

Solution.

P{XN(t)+1 > x} =

∫ t

0

P{XN(t)+1 > x | SN(t) = y}dFSN(t)

=

∫ t

0

P{X > x | X > t− y, renewal at y }dFSN(t)

=

∫ t

0

P{X > x,X > t− y, renewal at y}/P{X > t− y, renewal at y}dFSN(t)

=

∫ t

0

P{X > x,X > t− y, renewal at y}/P{X > t− y, renewal at y}dFSN(t)

=

∫ t

0

P{X > max{x, t− y}}/P{X > t− y}dFSN(t)

=

∫ t

0

[1− F (max{x, t− y})]/[1− F (t− y)]dFSN(t)

=

∫ t

0

min{1, [1− F (x)]/[1− F (t− y)]}dFSN(t)
♡

≥
∫ t

0

(1− F (x))dFSN(t)

= 1− F (x)
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Take F (x) = 1− e−λx into the step ♡, then we get

P{XN(t)+1 ≥ x} =

∫ ∞

0

min{1, e−λx/e−λ(t−s)}dFSN(t)

=

∫ t−x

0

dFSN(t)
(s) +

∫ t

t−x

e−λ(x+s−t)dFSN(t)
(s)

=

∫ t−x

0

e−λ(t−s)dm(s) +

∫ t

t−x

e−λxdm(s)

= e−λt

∫ t−x

0

eλsdλs+ e−λx

∫ t

t−x

dλs

= (1 + λx)e−λx − e−λt

Exercise 2.6.4. Prove the equation

m(t) = F (t) +

∫ t

0

m(t− x)dF (x)

Solution.

m(t) = E[N(t)]

=

∫ t

0

E[N(t) | X1 = x]dF (x)

=

∫ t

0

E[1 +N(t− x)]dF (x)

= F (t) +

∫ t

0

E[N(t− x)]dF (x)

= F (t) +

∫ t

0

m(t− x)dF (x)

Exercise 2.6.5. Consider a miner trapped in a room that contains three doors. Door 1 leads
her to freedom after two-days travel. Door 2 returns her to the begin room after four-days.
Door 3 returns her to the begin room after eight-days. Suppose at all times she is equally to
choose the three doors, and T denote the time it takes the miner to become free.

1. Define a sequence of independent and identically distributed random variables X1, X2, · · ·
and a stopping time N such that

T =
N∑

n=1

Xn

2. Use Wald’s equation to find E[t].

3. Compute E[
∑N

i=1Xi | N = n], and note that it is not equal to E[
∑n

i=1Xi].

4. Use part (iii) to compute E[T ].

Solution. (i) We define X as

P{X = 2} = P{X = 4} = P{X = 8} =
1

3

and
N = min{n : Xn = 2}
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Then N is stopping time of {Xn} since it’s depend on X1, · · · , Xn and is independent of Xn+1, ....
(ii) As we can check, N has a geometric distribution with mean 3. Then E[N ] = 3, and

E[X] =
1

3
(2 + 4 + 8) =

14

3
, hence by Wald’s equation we have

E[T ] = E[
N∑
i=1

Xi] = E[N ]E[X] = 14.

(iii)

E[
N∑
i=1

Xi | N = n] = E[2 +
n−1∑
i=1

Xi | N = n]

= 2 + E[
n−1∑
i=1

Xi | Xi > 2]

= 2 + (n− 1)×
4 + 8

2
= 6n− 4

However E[
∑n

i=1 Xi] =
14

3
n

(iv)

E[T ] = E[
n∑

i=1

Xi]

=
∞∑
n=1

E[
N∑
i=1

Xi | N = n]P{N = n}

=
∞∑
n=1

(6n− 3)

(
2

3

)n−1(
1

3

)
= 14

Exercise 2.6.6. For a renewal process, let A(t) and Y (t) denote the age and recess life of in
the time t. That is

1. A(t) = t− SN(t)

2. Y (t) = SN(t)+1 − t

compute

1. P{Y (t) > x | A(t) = s}

2. P{Y (t) > x | A(t+ x/2) = s}

3. For a poisson process, compute P{Y (t) > x | A(t+ x) > s}

4. P{Y (t) > x ,A(t) > y}

5. µ < ∞, prove that A(t)/t → 0 as t → ∞ with probability 1.
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Solution. Sorry I’m too lazy.
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Chapter 3

Markov Chains

3.1 Basic concept

3.1.1 definition

Definition. Consider a stochastic process {Xn, n ≥ 0}, that takes on a finite or countable
number of possible values. Usually we denote the possible values as the set of nonnegative
integers {0, 1, 2, · · · }. If

P{Xn+1 = j | Xn = i,Xn−1 = in−1, · · · , X1 = i1}
=P{Xn+1 = j | Xn = i}
:=pij ≥ 0

In other words, if we let Xn be the present state, and Xn−1, · · · , X1 be the past state, and Xn+1

be the future state, then the future state only depend on present state but independent of past
state. Then we call stochastic process is a Markov Chains.

Remark. :

1. The property that the future state only depend on the present state is called the Markov
property.

2. Clearly there must have
∞∑
j=0

Pij = 1

Since whatever the present state is, the future state must make a transition into some
state.

Naturally we define  P00 P01 · · ·
P10 P11 · · ·
...

... . . .


As the matrix of one-step transition probabilities Pij

Example 9 (Markov chain in M/G/1 queue). :
Recall: In a M/G/1 queue, customers come to a service center according to a Poisson pro-

cess with rate λ. There is a single server and the service time of each customers are independent
and identically distributed to G.

34
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Let {Xn} denote the number of customers left behind by the nth departure. Yn denote the
number of customers arriving during the service period of the (n + 1)st customer. Then we
have

Xn+1 =

{
Xn − 1 + Yn if Xn ≥ 0

Yn if Xn = 0

Since Yn represent the number of arrivals in non overlapping service intervals, it follows, the
arrival process being a Poisson process, that they are independent and

P{Yn = j} = E[P{Yn = j | Xn+1]

=

∫ ∞

0

e−λx
(λx)j

j!
dG(x)

Since Yn is independent of Xn−1, Xn−2, · · · , therefore Xn+1 only relative to Xn, {Xn, n > 0} is
a Markov chain. Moreover, the one-step transition probability given by

P0j =

∫ ∞

0

e−λx
(λx)j

j!
dG(x) j ≥ 0

Pij =

∫ ∞

0

e−λx
(λx)(j − i+ 1)

(j − i+ 1)!
dG(x) j ≥ i− 1, i ≥ 1

0 otherwise

3.1.2 Random Walk

Definition. Consider a sequence of variable which be independent and identically distributed
with

P{Xi = j} = aj j = 0,±1,±2, · · ·

1. If we let S0 = 0 and Sn =
∑n

i=1Xi, then {Sn, n ≥ 0} is a Markov chain for which
Pij = aj−i. And {Sn} is called the general random walk.

2. Specially, if P{X = 1} = p, P{X = −1} = 1 − p := q. Then at this time {Sn, n ≥ 0} is
called a simple random walk. It’s just a special case of general random walk, hence it
still a Markov chain.

There has a surprising result that {|Sn|, n ≥ 0} is still a Markov chain for a simple random
walk. To see this, we need some preparation.

Proposition 3.1.1. If {Sn, n ≥ 1} is a simple random walk, then

P {Sn = i||Sn| = i, |Sn−1 |= in−1, . . . , |S1 |= i1} =
pi

pi + qi

Proof. If we let i0 = 0 and define

j = max {k : 0 ≤ k ≤ n, ik = 0} ,

then, since we know the actual value of Sj, it is clear that

P {Sn = i | |Sn| = i, |Sn−1| = in−1, · · · , |S1| = i1}
=P {Sn = i | |Sn| = i, · · · , |Sj+1| = ij+1, |Sj| = 0}



CHAPTER 3. MARKOV CHAINS 36

Now there are two possible values of the sequence Sj+1, · · · , Sn for which

|S1+1| = i1+1, · · · , |Sn| = i

The first of which results in Sn = i and has probability

p
n−1
2

+ l
2 q

n−1
2

− 1
2

and the second results in Sn = −i and has probability

p
n−1
2

− 1
2 q

n−1
2

+ 1
2

Hence
P {Sn = i||Sn| = i, |Sn−1 |= in−1, . . . , |S1 |= i1} =

pi

pi + qi

Proposition 3.1.2. The absolute value of simple random walk {Sn} is still a Markov chain.
Proof. Consider

P{|Sn+1| = i+ 1 | |Sn| = i, |Sn−1| = in−1, · · · , |S1| = i1}
=P{|Sn+1| = i+ 1 | Sn = i}P{Sn = i | |Sn| = i, |Sn−1| = in−1, · · · , |S1| = i1}
+P{|Sn+1| = i+ 1 | Sn = −i}P{Sn = −i | |Sn| = i, |Sn−1| = in−1, · · · , |S1| = i1}

=
pi+1 + q[i+ 1]

pi + qi

Hence, the one-step transition probability of {|Sn|} is

Pi,i+1 =
pi+1 + qi+1

pi + qi
= 1− Pi,i−1

P01 = 1

3.2 n-step transition probability

3.2.1 Chapman-Kolmogorov equation

Definition. Still consider a Markov chain {Xn, n ≥ 0}.
P n
ij := P{Xn+m = j | Xm = i}

Which define as the probability that a process in state i will be in state j after n additional
transitions.

To calculate the probability of n step transition from i to j, we often use the Chapman-
Kolmogorov equations.
Theorem 3.2.1 (Chapman-Kolmogorov equation). For a Markov chain,

P n+m
ij =

∞∑
k=0

P n
ikP

m
kj for all n,m ≥ 0, all i, j

Proof. It’s easy to check by taking condition on the middle state k.
Corollary 3.2.2. If we let P (n) denote the matrix of n-step transition probability P n

ij, then
from the equation above, we can get

P (n+m) = P (n)P (m)

Where the multiplication above represents the matrix multiplication. Hence P (n) = P n.
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3.2.2 Communicate relation between states

State j is said to be accessible from state i if for some n ≥ 0, the probability P n
ij > 0. If two

state accessible to each other, we say they are communicate, denote as i ↔ j.

1. The communication is an equivalence relation. All state can be classified as different
equivalence class.

2. If there are only one equivalence class in a Markov chain, we say that this chain is
irreducible.

Definition. State i is said to have period d, if P n
ii = 0 whenever n is not divisible by d, and

d is the greatest integer with this property, which means the state i can only return to itself
when the process transit dk times. Let d(i) denote it’s period.

Proposition 3.2.3. If i ↔ j, then d(i) = d(j).

Proof. Since i ↔ j, there is n,m, P n
ijP

m
ji > 0. Because

P n+m
jj ≥ Pm

ji + P n
ij > 0

by 3.2.1. From the definition of d(j), we can conclude that

d(j) | m+ n

Moreover,
P

m+n+d(i)
jj ≥ P n

jiP
d(i)
ii Pm

ij > 0

Hence
d(j) | d(i)

A similar argument yields that d(i) | d(j), thus d(i) = d(j).

3.3 Recurrent and transient

3.3.1 Basic concept

For any state i, j, define fn
ij to be the probability that, staring in i, and the first transition into

j occurs at time n. Then

f 0
ij = 0

fn
ij = P{Xn = j,Xk ̸= j, k = 1, 2, · · · , n− 1 | X0 = i}

Let
fij =

∑
n=1

fn
ij

Then fij is the probability of ever making a transition into state j, given that the process starts
in i. The probability fij > 0 if and only if j is accessible to i.

Definition. State i is said to be recurrent if fii = 1, and transient otherwise.

Remark. This means, for a recurrent state i, with probability 1, it will finally return to state
i. Also, for a transient state, with probability p > 0, it will never return to itself.
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To understand the recurrent state. Consider if a state i is transient, what’s the probability
that it will occurs infinite times? Let N(i) denote the times that state i occurs in the infinite
process. Then

P{N(i) ≥ k + 1 | X0 = i} = (fii)
k

Since fii < 1, then
lim
k→∞

P{N(i) ≥ k} = lim
k→∞

(fii)
k = 0

Hence if a state i is not recurrent, with probability 1 it will not occurs from some time. In
other words, E[N(i)] < ∞. Formally, we have

Proposition 3.3.1. For a Markov chain,

state i is recurrent ⇐⇒ E[In the infinite process, the number that state i occurs | X0 = i] = ∞

Proof. :
⇐:) This was proved above.
⇒:) Since i is recurrent, with probability 1 it will return to i. By the Markovian property

it follows that the process probabilistically restarts itself upon returning to i. Hence it still will
return to i with probability 1. Repeating this argument, we see that with probability 1, the
number of visits to i will be infinite and thus the expectation will be infinite.

From now on, we can get a equivalent condition for a state i is recurrent.

Theorem 3.3.2. For a Markov chain, a state i is recurrent, if and only if

∞∑
n=1

P n
ii = ∞

Proof. Let

In =

{
1 if Xn = i

0 else

Then

E[In the infinite process, the number that state i occurs | X0 = i]

=E[
∞∑
n=1

In | X0 = i]

=
∞∑
n=1

E[In | X0 = i]

=
∞∑
n=1

P n
ii

=∞

By the proposition above.

Corollary 3.3.3. For a Markov chain which has only finite many state, it must have at least
one recurrent state.
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3.3.2 Class property about recurrent state

Recall that if i ↔ j, we say they are in the same equivalence class. Let Ri be a recurrent class
that contain i. (It’ might not contain all of the recurrent state.). And T be all of the transient
state.

Proposition 3.3.4. If state i, j are in the same class, that is i ↔ j, then i is recurrent ⇐⇒
j is recurrent , hence recurrent is a class property, so as transient.

Proof. Suppose i is recurrent. Since i ↔ j, then there have n,m, P n
ij > 0, Pm

ji > 0.∑
k≥0

P k
jj ≥

∑
k≥0

P n+m+k
jj ≥

∑
k≥0

(Pm
ji )(P

n
ij)(P

k
ii)

= (Pm
ji )(P

n
ij)
∑
k≥0

(P k
ii)

= ∞

Corollary 3.3.5. If i ↔ j, and j is recurrent, then fij = 1.

Proof. By the corollary 3.3.4, we know that with probability 1, state i will return to itself by
finite times of transition.

Suppose X0 = i, let n be such that p
(n)
ij > 0. If Xn ̸= j, we say that we loss opportunity

1. However, by finite times of transition, it will return to state i with probability 1, let T1

denote the next time we enter state i. We say we loss opportunity 2, if XT1+n ̸= j, and so on
we can get a time sequence {Tn} and an opportunity sequence {n}. We can view the number
of opportunity that we miss is a random variable, then it’s a geometric random variable with
success probability P

(n)
ij .

Now if fij < 1, means it has a positive probability p > 0, that began from state i, and
never make transition into state j. Moreover, it means with probability p0 > 0, we will miss
all opportunity. However, since 0 < P

(n)
ij < 1, we know that p0 = limk→∞(P

(n)
ij )k = 0. Hence

here is a contradiction, and we have fij = 1.

In the next proposition, we will prove the a class that is recurrent is closed, which means if
the process get into this class, then it will not leave that class.

Proposition 3.3.6. Suppose Ri is a class that contain recurrent state i, j /∈ Ri, then for all
k ∈ Z+, P k

ij = 0

Proof. Suppose if there is a k > 0, P k
ij > 0, then since they are not communicative, for all

n ∈ Z+, P n
ji = 0. Hence if we assume process start at state i, then with positive probability

P k
ij, process will not return to i, which contradict to the definition of recurrent.(Recurrent state

require if start at i, with probability 1, process will return to state i.)

Now we can make conclusion:

1. For a recurrent state, it cannot access to a transient state. However, a transient state
may make transition into a recurrent state.

2. If two recurrent state lie in different class, then they cannot make transition into each
other.

So we can image that, if a Markov chain start at a recurrent state i, then only states in Ri will
occur in the chain. If a Markov chain start at a transient state, we know that it will finally
make transition into some recurrent class or just on the transient state set T .
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3.4 Limit theorem in Markov chain

3.4.1 Delayed renewal process in Markov chain

We denote Nj(t) as the number of transitions into j by time t.

1. If j is recurrent and X0 = j, then {Nj(t), t ≥ 0} is a renewal process with interarrival
time {Xn} has the same distribution

P{X = n} = fn
jj.

2. If we start at X0 = i, i ↔ j, then {Nj(t)} is a delay renewal process, with the first
interarrival time has distribution

P{X1 = n} = fn
ij,

others have distribution
P{X = n} = fn

jj.

Then we can apply the limit theorem on renewal process to Markov chain.
In a same way we should first define the expectation of the interarrival time. Let µjj denote

the expected number of transitions needed to return to state j. Then

µ =

{
∞ if j is transient∑

n=1 nf
n
jj if j is recurrent

Remark. :

1. What we should know is that since a state j is transient, the expectation of the number
of transitions needed must be infinite, that’s because fjj < 1, 1− fjj > 0, hence it has a
positive probability to be infinite, by the definition of expectation, µjj = ∞.

2. If a state j is recurrent, we define µ =
∑

n=1 nf
n
jj by the definition of expectation. How-

ever, it doesn’t means µjj must be finite.

Now we can obtain the following theorem from the former theorem.

Theorem 3.4.1. If state i, j communicate, we have

1. If the chain start at X0 = i. With probability 1,

Nj(t)

t
=

1

µjj

as t → ∞

2. With probability 1,

lim
n→∞

n∑
k=1

P k
ij

n
=

1

µjj

3. If j is aperiodic, then

lim
n→∞

P n
ij =

1

µij
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4. If j has period d, then

lim
n→∞

P nd
ij =

d

µij

Specially, we can take i = j.

Proof. We assume the first state X0 = i, then {Nj(t), t ≥ 0} is a delay renewal process.
i) It’s obvious by 2.4.1.
ii) Notice that, if we let

In =

{
1 Xn = j

0 else

Then
P{In = 1} = P n

ij, P{In = 0} = 1− P n
ij

Since Nj(t) =
∑[t]

k=1 Ik, then

mj(t) = E[Nj(t)] =

[t]∑
k=1

P k
ij

Since renewal can only take place when time t is positive integer, hence we can assume the time
t only take from positive integer, then

lim
t→∞

mj(t)

t
= lim

n→∞

mj(n)

n
= lim

n→∞

∑n
k=1 P

k
ij

n

By fundamental renewal process in delayed renewal process, we know

lim
n→∞

∑n
k=1 P

k
ij

n
→

1

µjj

iii) By Blackwell theorem in delayed renewal process (see 2.4.1), and ii)

lim
n→∞

P n
ij = lim

n→∞
mj(n+ 1)−mj(n) =

1

µjj

iv) Is just the same as iii).

3.4.2 Positive recurrent and null recurrent

Recall. If a state j is recurrent, we know the expectation of it’s return time is define as

µjj =
∞∑
n=1

nfn
jj

Since there may have two condition, one is that µjj is infinite, one is that it’s just finite. To
verify them, we say

Definition. :

1. A recurrent state j is null recurrent, if µjj = ∞.

2. A recurrent state j is positive recurrent, if µjj < ∞.

3. A positive recurrent aperiodic state is called ergodic.
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Remark. Recall that a recurrent state, with probability 1, it will return to itself with a finite
transition. Is it contradict to null recurrent? The answer is no. Since an almost everywhere
finite function may have infinite integral.

How to verify a recurrent state is null or positive?

Proposition 3.4.2. If a state j is recurrent, and Markov chain start at X0 = i. Let

πj = lim
n→∞

P
nd(j)
jj

where d(j) is the period of j. Then

1. πj > 0 ⇐⇒ j is positive.

2. πj = 0 ⇐⇒ j is null.

Proof. By the theorem 3.4.1, we know that

lim
n→∞

P nd
jj =

d

µjj

when we let i = j. Hence if µjj = ∞ ,πj = 0, µjj < ∞, πj > 0.

One thing we should remark, and this is not mentioned in the textbook. Above, we define
πj = limn→∞ P nd

jj . However, in the textbook, we often use πj = limn→∞ P nd
ij , where i is

an arbitrary state that communicate with j. So we should prove that these definition are
equivalent.

Proposition 3.4.3. The definition

1. πj = limn→∞ P nd
jj

2. πj = limn→∞ P nd
ij

are equivalent. Where d is the period of j, and i is a state that i ↔ j. Hence for a irreducible
Markov chain, we can simply use limn→∞ P nd

ij to denote πj.

Proof. By the theorem 3.4.1, they all equal to
d

µjj

.

Proposition 3.4.4. Positive or null recurrent is a class property, that is if i ↔ j, then they
are all null or positive.

3.4.3 Two class of irreducible aperiodic Markov chain

Definition. A probability distribution {Pj, j ≥ 0, j ∈ N+} is called stationary for the Markov
chain, if the Markov chain has one-step transition probability {Pij}, and

Pj =
∞∑
i=0

PiPij, j ≥ 0

Proposition 3.4.5. If the probability distribution of X0 is stationary for the Markov chain,
then Xn will have the same distribution as X0. Then {Xn, n ≥ 0} will be a stationary process.
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Proof. We will prove this by induction. First

P{X1 = j} =
∞∑
i=0

P{X1 = j | X0 = i}P{X0 = i}

=
∞∑
i=0

PijPi

= Pj

Hence X1 has the same distribution of X0. By induction

P{Xn = j} =
∞∑
i=0

P{Xn = j | Xn−1 = i}P{Xn−1 = i}

=
∞∑
i=0

PijPi

= Pj

Hence we prove the proposition.

Remark. A stochastic process {Xt}, and FX(xt1+τ , · · · , Xtn+τ ) represent the cumulative dis-
tribution function of the unconditional joint distribution of {Xt} at times t1 + τ, · · · , tn + τ .
Then {Xn} is said to be strictly stationary if

FX(xt1+τ , · · · , Xtn+τ ) = FX(xt1 , · · · , Xtn)

holds for all ti and n and τ .

Theorem 3.4.6 (classification of irreducible aperiodic Markov chain). An irreducible aperiodic
Markov chain belongs to one of the following two classes.

1. If all state are positive recurrent, that is

πj = lim
n→∞

P n
ij > 0

Then Markov chain has and only has one stationary distribution that is {Pj = πj, j ≥ 0}.

2. Else, all state are transient or null recurrent, and in this case there exists no stationary
distribution of the Markov chain.

Proof. We will prove {Pj = πj, j ≥ 0} is a stationary distribution of Markov chain when πj >
0, ∀j ≥ 0. And if a Markov chain has a stationary distribution, it can only be {Pj = πj, j ≥ 0}.

First suppose when πj are only positive. Note that

M∑
j=0

P n
ij ≤

∞∑
j=0

P n
ij = 1 ∀M

Letting n → ∞, yields
M∑
j=0

πj ≤ 1 ∀M
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Letting M → ∞, yields
∞∑
j=0

πj ≤ 1

Now

P n++1
ij =

∞∑
k=0

P n
ikPkj ≥

M∑
k=0

P n
ikPkj ∀M

Letting n → ∞, we get

πj ≥
M∑
k=0

πkPkj ∀M

Which leads to

πj ≥
∞∑
k=0

πkPkj ∀M

We claim that this inequality can only takes equality. Otherwise, suppose that the inequality
is strict for some j. Then

∞∑
j=0

πj >
∞∑
j=0

∞∑
k=0

πkPkj =
∞∑
k=0

πk

∞∑
j=0

Pkj =
∞∑
k=0

πk

Which is a contradiction. Therefore,

πj =
∞∑
k=0

πkPkj

Now putting Pj = πj, then {Pj, j ≥ 0} is a stationary distribution.
Now suppose {Pj, j ≥ 0} be any stationary distribution. Then if it’s the distribution of X0,

then

Pj = P{Xn = j}

=
∞∑
i=0

P{Xn = j | X0 = i}P{X0 = i}

=
∞∑
i=0

P n
ijPi

and we get

Pj ≥
M∑
i=0

P n
ijPi ∀M

By letting n → ∞, and we have

Pj ≥
M∑
i=0

πjPi ∀M

Letting M → ∞ fields

Pj ≥
∞∑
i=0

πjPi = πj
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On the other hand, By Pj =
∑∞

i=0 P
n
ijPi, and P n

ij ≤ 1, hence

Pj ≤
M∑
i=0

P n
ijPi +

∞∑
i=M+1

Pi ∀M

By letting n → ∞, and we get

Pj ≤
M∑
i=0

πjPi +
∞∑

i=M+1

Pi ∀M

Since
∑∞

i=0 Pi = 1, by letting M → ∞

Pj ≤
∞∑
i=0

πjPi = πj

And we get Pj = πj, hence there is only one stationary distribution {πj, j ≥ 0}. So we have
proved (i).

Now if the state are transient or null recurrent, and {Pj} is a stationary distribution. By

Pj ≤
∞∑
i=0

PπjPi = πj

And πj = 0,∀j ≥ 0, hence Pj = 0, and this is contradict to it’s a stationary distribution. Hence
there is no stationary distribution of case (ii).



Chapter 4

Continuous-time Markov chain

4.1 Basic concept
In this chapter we consider the continuous-time Markov chain.

Definition. A continuous time stochastic process {X(t), t ≥ 0} taking on values in the set of
nonnegative integers in called a continuous time Markov chain if ∀s, t ≥ 0, and nonnegative integers i, j, x(u), 0 ≤
u ≤ s,

P{X(t+ s) = j | X(s) = i,X(u) = x(u), 0 ≤ u < s}
=P{X(t+ s) = j | X(s) = i}

This definition imply the Markovian property in continuous case. Especially, we define

Definition. If the probability

P{X(t+ s) = j | X(s) = i}

of a continuous Markov chain is independent of s, in other word

P{X(t+ s) = j | X(s) = i}
=P{X(t) = j | X(0) = i}

Then the continuous Markov chain is said to have stationary property.

Remark. In this chapter, we the continuous Markov chain we mentioned are all assumed as
the stationary Markov chain.

Now let’s consider a continuous Markov chain. If it enters in some state i at some time, and
suppose that the process does not leave state i until some time, then what’s the distribution of
the staying time. The next proposition will answer this question.

Definition. Let τi define the amount of time that the process stays in state i before making a
transition into a different state.

Proposition 4.1.1. The staying time τi for an arbitrary state i is exponentially distributed.

Proof. For all state i, and ∀s, t ≥ 0.

P{τi > s+ t | τ > s}
=P{τi > t}

From the stationary property. Hence the distribution of the staying time τi is memory-less.

46
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Hence we can define

Definition. For a stationary continuous Markov chain, and an arbitrary state i:

1. The time of staying at state i is exponentially distributed. Denote it’s rate as vi.

2. If vi = ∞, we say this state is instantaneous.

3. If vi = 0, we say this state is absorbing.

Hence, for a continuous Markov chain, we can view as a discrete Markov chain. But the
different is for the continuous case, it will stay at every state with a exponential random variable
before making transition into other state. One thing should be remark is that the distribution
of the staying time is independent of the next state. In other word, if a discrete Markov chain
will stay at every state for some time that is exponentially distributed before making transition,
then it’s a continuous Markov chain.

Naturally we will define

Definition. For all i ̸= j
qij := viPij

where

1. vi represent the rate that process leave the state i.

2. Pij represent the probability that process next will making transition into state j

Hence qij represent the rate that process making transition from state i into state j.

Next we consider another thing. In a finite time, can continuous Markov chain visit infinite
state? The answer is it might be. To show this, let’s consider the following example.

Example 10 (No regular cont.M.C). Consider a cont.M.C, for any state i, with probability 1,
it will make transition into state i + 1, that is Pi,i+1 = 1, but before making transition from
state i into state i+1, it will spending an exponentially distributed amount of time with mean
1/i2 in state i. That is

Pi,i+1 = 1 vi = i2

Then since

E

(
∞∑
i=1

τi

)
=

∞∑
i=1

E (τi) =
∞∑
i=1

1

i2
< ∞

hence we have

P{
∞∑
i=1

τi = ∞} = 0

and it has a positive probability to making an infinite transition during a finite time.

So we should define

Definition. For a continuous Markov chain

1. If it can make infinite transition during a finite time, then it’s said to be irregular.

2. Otherwise, it’s said to be regular.

Remark. Just as the stationary property, we assume that the continuous Markov chain we
mentioned at this chapter is all regular.

We can review, in this chapter, every time we mention cont.M.C, it’s assumed as a stationary
and regular cont.M.C.
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4.2 Birth and death process
Definition. A cont.M.C is called a birth and death process, if

1. The state can only be 0, 1, 2, · · ·

2. when |i− j| > 1, qij = 0.

Then for a birth and death process, from state i it can only go to either i+ 1 or i− 1. We
often view the state of a birth and death process as the size of some population. And we say

1. A birth occur, if state i → state i+ 1

2. A death occur, if state i → state i− 1

And denote

1. λi = qi,i+1 = viPi,i+1, which is called the birth rate.

2. µi = qi,i−1 = viPi,i−1, which is called the death rate.

It’s easy to check vi = λi + µi.
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