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Here are some conventions:

R, Q, C are fields learnt in Mathematical Analysis. The mappings
Re,Im: C — R are taking real part and imaginary part of a
complex number respectively. K is one of R and C, usually used
to state different cases conveniently. N is the set of positive
integers. For all n € N, the set {k € N: 1 < k < n} is denoted by

[n].
K™*™ means the matrix space containing all n X n matrices.

V,3 and 3! means “for all, there is and there is unique” respec-
tively.

Formula A := B means A is defined as B. For example,

means C is defined as a quotient ring.

For each set A, the identity map isida: A — A,a — a. It’s also
used in the case that A C X, thenidyg: A — X,a+— a.

For a mapping f: A — B, we write A = dom(f), B = cod(f).
For two arbitrary sets X,Y, the set ¥ X is the set containing all
mappings from X to Y.

For a,b € R, define minimum function

b—la—0b
xR R o) Ol
and maximum function
b —b
WRXR%R@@Hgi%¥—J

Subtraction of sets A,Bis A\ B:={x € A:z ¢ B}. We write
the union of A and Bby A| |Bif ANB=2.

For a set A, P(A) means the power set of A.
For a set A, and its subset B, the mapping y g is defined by

1 ze€B;
:A—={0,1},x — ’
XB {0.1}@ {O x ¢ B.

There is a bijection between P(A) and 42, where 2 is an arbitrary
set with exactly 2 elements.
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e A sequence in X is a map z: N — X,n — z, (in other words,
r € NX), and x: N — X is usually denoted as (x,)neny € X.

If X is a topological space, the definition of limit is just the defi-
nition of a net in a topological space.

Furthermore, limit of a double indexed sequence (&, 1 )m nen is
defined as the limit for the product directed set N x N.

e For proposition p, g, we use p A ¢ to mean the proposition “p and
q”, N has the truth table as follows.

plalpig
T[1] 1
1[0] 0
0l1] O
0/0] O

Similarly, we define p V q.

e Addition of mappings whose codomains are the same linear space
is defined pointwisely. That is: let f,g: X — V be given, we
define the function

f+g: X =V f(z)+g(x).

e For f: X — K and k € K, we define that function f + k by
x +— f(x) + k. That is, respect k as a constant function z +— k.

e lim,, means lim,,_,., for short.

e Given a linear map f: X — Y where X,Y are linear spaces.
Then

ker f:= f71(0) = {z € X : f(z) = 0}.

e We say a diagram commutes, if all the morphisms (and their
possible compositions) with the same domain and same codomain
coincide.

e If an arrow is unique/injective/surjective, we denote the arrow by
--+/ < / — respectively.

e The Kronecker symbol on a set is defined as

1, z=uy;
5:X><X—>{0,1}7(:1:7y)»—>5$::{’ T
And dy is also denoted by d, -
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The sign function is defined as follows

0, z = 0;

sign: K — K, 2z +—
s {z/|z|7 z # 0.

The rounding down function is

||t R—=Z:x—sup{k € Z: k < x}.

Let (2, F) be a measurable space. We say a function f:  — R
is measurable, if the preimage of Borel subsets of K under f is F-
measurable. That is, assume K is equipped with Borel o-algebra.

The symbol [J means that a proof or solution ends. The symbol
B means that an example or a remark ends (I wouldn’t use this
everytime).

Somewhere you can see , that is reminding you to
think about what here should be. (Just like 1+1=2)
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0 INTRODUCTION

0 Introduction

Here is something about this note.

Syllabus

This lecture note contains topics as follows:
e Foundations:

— Linear Normed space;
— Bounded Linear Map;

— Banach Space and Completion.

Important Theorems:

— Baire Category Theorem;

Banach-Steinhaus Theorem;

Open Mapping Theorem;
Closed Graph Theorem.

Topics about Duality:

— Dual Space;
— Natural Embedding;
— Weak/Weak* Convergence.

Compact/Finite-Rank Operator:

Hilbert Space:

— Definition and Examples;

Orthogonality and related topics:
* Pythagoras Theorem,;
* Bessel’s Inequality;
* Gram-Schmidt process;
x Complete Orthonormal Basis.
— Projection:
* Projection Theorem:;
x Projection Operator.

Riesz Representation Theorem (on Hilbert space):
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0 INTRODUCTION

— Applications:
* Sesquilinear functional and Representation Theorem;
x Hilbert Adjoint Operator:
* Self-Adjoint Operator;
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1 WEEK 1

1 Week 1

1.1 Lecture 1-1

We begin from Banach Space and Metric Space. Before the def-
inition of Banach space, we should recall the definition of Vector
spaces(or Linear Spaces). Given a set X, a vector space is a triple
(X,+,:) where +: X x X — X is called the addition on X, and
-t Kx X — X is called scalar-multiplication on X, satisfying 8 axioms.

Recall

An isomorphism between vector space means a bijection that keeps the
linear structure, that is p: X — Y satisfies: Vk,l € K,Vx,2’ € X we
have p(kx + l2') = kp(z) + lp(2"). Isomorphism in categories should
be in mind:

Category Grp Ling Top
. -Li .
Isomorphism | . Group' . K tnear Homeomorphism
isomorphism | isomorphism

1.1.1 Linear Normed Spaces

Definition (Linear Normed Space). Let X be a linear space. Define a
map || ||: X — Rx¢ satisfying:

@A) z|l=0 — =0 ;
(ii) [[kzl| = |&| - [[[|(Vk € K,z € X);
(iii) [lz +yl <zl + [lyll(Vo,y € X).

Then || || is called a norm over X, and (X,|| || is called a linear
normed space.

Remark 1.1. There is some similar weaker definitions:
o If (only) (i) is not satisfied, we call || | a semi-norm.

o If (only) (iii) becomes ||z + y[| < C([|z[|+|ly[l) for some C' € Ry,
we call || | a quasi-norm.

Equivalently, we can change the codomain of || || to R and (i) to

Ve e X, ||z]| Z0)A(Jz|| =0 < = =0).
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1.1 Lecture 1-1 1 WEEK 1

Example 1 (Euclidean Spaces). (R”, ] ||) is a linear normed space,
who-se norm is defined as follow:

n 1/2
11 R = Rso,z = (21, ywa) = (Y a2)

Jj=1

Triangle inequality for this norm comes to be the particular triangle
inequality for the metric, which can be shown by Cauchy-Schwarz in-
equality for real numbers.

Example 2 (Continuous Functions Spaces). (C([a,b],K),maX[a’bH |)
is a linear normed space. Recall the definition of C([a, b], K) the family
of continuous function from [a, b] to K. whose norm is defined as follow:
max] |- (C(a,0], K) = [0,00), f = max [ f(z)].
a, xre|a,

Recall why C([a, b],K) is a vector space. What is needed to show is
just “addition of continuous functions is continuous”, and there is lots
of ways to do this, see remark. Notice that [a,b] is compact and so is
f([a,b]), guaranteeing the existence of max,e, 4| f (7). Compatibility
with multiplication and triangle inequality is trivial.

Remark 1.2. We have many methods for proving “addition of contin-
uous functions is continuous”. They give the same result with different
standpoints. Suppose f, g € C([a, b], K)

1. By the definition of continuity: We prove pointwisely: Fix z €
[a,b]. Ve > 0,we can find 01,02 > 0 such that Vy : 0 < |y — z| <
01, [f(y) = f(@)] <e/2and ¥y : 0 < |y — x| < da,]9(y) — g(x)| <
€/2. Therefore, let 6 := 01 A 02 and we have Vy : 0 < |y — x| < 6,

I(f +9)(y) = (f + 9) @) =If(y) + 9(y) = f(z) — g(x)
<|f(y) = f(2)| + l9(y) — g(z)|
<eg/2+¢/2

=E.

Therefore, f + ¢ is continuous at z.

2. By sequence: We prove pointwisely: Fix x € [a,b]. Suppose there
is a sequence (zp)nen C [a,b] converges to z, then:

Jim (f +g)(wn) = lim (f(2n) + g(zn))

= lim f(zn)+ lim g(z,)
f(@) +g(z)
=(f+9)(@).
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1.1 Lecture 1-1 1 WEEK 1

Therefore, f + ¢ is continuous at x.

3. By the topological definition(K = R case): an observation :

(f +9) " (too) = (F 7t —r,00) N g~ (r, 00)),

reR

which should be prove by A C BAB C A = A = B. Right
hand side is union of intersection of two open sets, and similarly
for (f +g)~!(—o0,t). We're done.

4. By the continuity of addition(K = R case): We decompose f + g
as following communicative diagrams

[a,b] LY RxR 2 — (f(2)g(x))

N

f(@) +9(x)

The right diagram explains what the functions in the left diagram
mean. By the property of product topology and continuity of f
and g, we know (f, g) is continuous. Continuity of +: RxR — R
is trivial. Therefore f + g = 4 o ({f, g)) is continuous.

To get rid of the assumption K = R, use the fact that f: X — C is
continuous if and only if both Re(f),Im(f) are continuous.

Example 3 (p-summable sequence spaces). Given p € [1, 00] we define
(€p: [ [I,,), where

lp ={(an)ner : »_lan|" < o0},

n>1

lo ::{(an)nEN : Sup|an| < OO}
neN

And norms are

fall, ==( lanl?)”

n>1

lall = sup|an|.
neN

Proposition 1.1. (/|| ||,,) is a normed space.

Proof. Clearly {, is a vector space. Now we prove || || is a norm.
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1.1

Lecture 1-1 1 WEEK 1

. lall,, = 0 and |ja]|,, =0 <= a = 0: |a||,, > 0 is trivial.

Suppose |lal|,, = 0, that is sup,cy|an| = 0. By definition of
supremumn, |a,| < 0(Vn € N). Therefore, a = 0.

. Vk € K, by property of absolute value we know [|kal| ., = |k|al .-

. Let a,b € {o and M, = ||a|| ., My = ||b]| .- Now from definition

of supremum
Vn € N:ay + by| < |an| + |bn| < My + M,

Again using definition of supremum, we get ||a + b[| ., < My+M,,
which was what we wanted. O

Theorem 1.2 (Minkowski’s Inequality). For each measure space (2, F,
w) and f,g € L,(1 <p < 0), we have

1 +gll, < 171, + llgll,-

Remark 1.3. In general, the inequality || f + g|, < || fIl,+lgll,(p > 1)
is called the Minkowski’s inequality.

Example 4. /., has linear subspaces: ¢ C ¢ C £, where

¢ :={(zn)nen € RN : (2,)nen is a convergent sequence},

co :=={(xp)nen € RY : (2,)nen is a convergent sequence with limit 0}.
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1.2  Lecture 1-2 1 WEEK 1

1.2  Lecture 1-2
1.2.1 Lebesgue integrable function spaces

Recall the left problem: Minkowski’s inequality, which makes (¢, | [|,,)
a normed space. Now, we need a lemma.

Lemma 1.3 (Holder’s Inequality). Let a € ¢2,b € ¢7 for p € (1,00)
and ¢q € (1,00) satisfy 1/p+ 1/q = 1, we have:

llablly < llall,lbll,, (1)

Remark 1.4. ¢ = p/(p — 1) is also called the dual index of p, usually
denoted by p'.

Remark 1.5. Before start of the proof, we have a look at (1). Recall
what we have learned in mathematical analysis, and have a problem in
mind: is there anything similar? That is

. Now we have a direct goal.

Aim. Prove (1) by imitating the proof of Cauchy-Schwarz Inequality.

Now, recall all the proofs of Cauchy-Schwarz Inequality you know
and think: Which would be useful in this case? [6] Lagerange’s Idendity,
Schwarz’s argument (inner product (x + ty, x + ty) > 0 ), or just 2zy <
22 +9%? When p # 2, Schwarz’s argument is a nonstarter since there is
no quadratic polynomial in sight. Similarly, the absence of a quadratic
form means that one is unlikely to find an effective analog of Lagrange’s
identity.

This brings us to our most robust proof of Cauchy-Schwarz Inequal-
ity, the one that starts with the so-called “humble bound,”

2 2
myﬁ%—%—%ﬁx,yéﬂ%. (2)

(2) proves Cauchy’s inequality as follows.

Proof of Cauchy’s inequality from (2). Without lost of generality,
suppose that -, -, aZ = A% # 0 and D>t b2 = B? #£0. Let

a;- :aj/AJ);- = b]/B,Vj € N.

Notice that 3 - (ay,)® = 3,5, (ba/)? = 1. Now (2) implies

D anby <Y (al+02)/2=> al/2+ > bi/2=1

n>1 n>1 n>1 n>1
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1.2  Lecture 1-2 1 WEEK 1

the line y =«

a T

Figure 1: Area meaning of (2)

And, in terms of (ap)nen, (bn)nen, and multiply AB on both sides, we
have 1o 1o
o< (X) (20)" :
n>1 n>1 n>1
This bound may now remind us that the general AM-GM inequality
ry<—+ = forallz,y>0and ¢g=p(p,qg>1). (3)
b q
(3) is the perfect analog of the “humble boun”(2).

Proof of (2). There is many ways to to this, see[6]. We choose the
way by area of regions. Consider the region under the function x — x:
A={(z,y) ER*:0<y <z <a},
Bi={(z,y) eR?*: 0 <z <y <b}.

Then Figure 1 shows that m(A) +m(B) > m([0,a] x [0,b]), where m
denotes the Lebesgue measure on R2. 0

Now, by imitating the proof of (2), we need to get the z?/p as area
of some region under a function, so consider the function z — zP~!.

Proof of (3).
It’s easy to verify that

D

m(A) = / fdm,m(B) =br—1 —/ fdm,
[0,a] [0,6P/(P=1)]

where m is the Lebesgue measure on R. By simple calculation, we have
m(A) = a? /p,m(B) = b?/q. Notice that AU B contains [0, a] x [0,],
we’re done. O
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1.2  Lecture 1-2 1 WEEK 1

Figure 2: Fucking Area meaning of (3)

Proof of (1). Without loss of generality, suppose [a + 0|, # 0. And
suppose a # 0(c /,),b # 0(c (,). As what we do in the proof of
Cauchy’s inequality, let

&y = a/all, ¥ = b/ |0, € N

Notice that [|a’[|, = [[0[|, = 1. Now, apply (3) to |a;b;|, we have
Slapbl | < lanl’ o+ > Wl g =1/p+1/g=1,
n>1 n>1 n>1

which implies
llablly < llall,|[oll,- O

Proof of Minkowski’s inequality.

lz +ylp =Dl +y)al”

n>1
- Z'xn + ynlp_1|xn + Yl
n>1
< Z|fﬂn + yn|p71(|mn| + |yn|)(Triangle inequality on R)
n>1
= Z|xn + ynlp_1|:rn| + Z|1‘n + yn|p_1|yn|
n>1 n>1

:“(m + y)p_lm”l + ||(x + y)p_lyHl((l()f of norm)
<[+ 5|l + [ + 5] gl e (1)) (4
_ p/q _
=[G+l Ml + llyll,) (2 — e = p),
and divide |l + y||£/q(75 0) from both sides, getting
p—p/4q
e +yll, " < llll, + llyll,-

We're done, since p — p/q = 1. O
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1.2  Lecture 1-2 1 WEEK 1

To summarize what we have done, we need the language of measure.

Definition (o-algebra). A o-algrbra on a set () is a subset 2, satis-
fying:

1. Q.o eF;
2. Ac F = Q\AeF;

Definition (Measurable Space). A measurable space is a double
(Q, F) where  is an aritrary set and F is a o-algebra over ). Elements
of F is called measurable sets of (2, F).

Definition (Measure, Measure space). A measure is a o-additive
function from F to [0,00]. A triple (Q,F,u) is called a measure
space, if (£2, F) is a measurable space and p is a measure.

Definition (Integral with respect to measure). Let (€2, F, 1) be a mea-
sure space. We have a glance at “how to define integral with respect to
measure”. For the detail, see [3].

Step 1: Define integral | for measurable simple nonnegative func-
tion:

n n
Z agxa, — Z akp(Ag).
k=1 k=1
Step 2: Define integral f for measurable nonnegative function:
f+—sup { /gp : ¢ < f, p is nonnegative simple function}.
Step 3: Define integral [ for measurable function:

fros [rran= [ 1 an,

where [ = fxr-1j0,00), [~ = —FXf1(—00,0] -

Definition (p-integrable space). Let (2, F, i) be a measure space, then
the p-integrable space over £,(2, F, ) is defined as

L,(Q,F, p) = {f € K : f is measurable and /|f|p dp < oo}.
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1.2  Lecture 1-2 1 WEEK 1

Fact. The proof of Minkowski’s inequalityover ¢, actually proved the
Minkowski’s inequalityof every p-integrable space £,(€Q, F, u).

To understand this fact, we should have another way to illustrate
>". That is, > is a kind of integral.

Definition (Counting Measure). Given a measurable space (§2,F).
Define p: F — [0,00], A — fA. Where A = oo if A is an infinite set,
and fA = n if A has exactly n elements. p is called the counting
measure over ({2, F).

Remark 1.6. It can be shown that,[1] for real sequence (ay, )nen (equiv-
alent to a function a: N — R ), we have

Zan :/adu.
n>1

That’s why we can respect Y as [. And hence, the fact above is just
regard > as integral with respect to coungting measure, and the proof
works for arbitrary measure space.

Remark 1.7. We can also prove Minkowski’s inequalityof L, by using
the L. Since

11, = sup{‘ / fgdu' g€ Ly(@.F .. lgl, <1
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2 WEEK 2

2 Week 2

2.1 Lecture 2-1
2.1.1 Quotient Spaces

Let X be a vector space with a linear subspace Xy, denoted as Xy — X.

Definition (Coset). Vz € X, the coset of x (with respect to Xp),
denoted as [z] or  + X is defined as

[l=2x+Xo:={z+y:y e Xo}.

Definition (Quotient Space). X/XO = {[z] : + € X}, called the
quotient space of X (with respect to Xj).

We want X/ X, to be a vector space, so we define operations as
follows:

o Xy, x X, =X x () W) = [+ y);
©:Kx X/XO _>X/X07 ([l‘],]{i) = [k)l‘]

Where [z 4+ y] means the addtion (and take the coset), and the [kz]
means the scalar multiplication of X (and take the coset). You should
verify that the operations are well defined. For simplicity, we write +, -
instead of @, ®.

Claim. (X/XO, +,-) is a vector space.
Question 2.1. Think this questions:
1. Clearly, the zero element in X, X, 18 [0]. But, [0] =7;
2. If [z] # [y], what is [z] N [y] ?
3. Show that z € [y] <= z —y € Xo.
Answers are as follows:
1. , from definition of coset.

2. @. Since (3) implies [z] N [y] # @ means Iz : z —x,z —y € X,
therefore x —y = (z —y) — (¢ — z) € Xj since Xy is a linear
subspace. Now, Va € [z], from a = = + w , we have
a=y+ (w+(r—y)) and (w+ (z —y)) € X so a € [y]. Above
all, [x] C [y]. It is the same to know [y] C [z].

Page 18 of 198



2.1 Lecture 2-1 2 WEEK 2

3. Since

x € [y] <= = =y+ z for some z € Xy
= r—y==z for some z € X
=z —y €0 =X,

Let’s see a simple example:

Example 5. From Example 4, ¢ < ¢ — f~. And we introduce a
new notion:

Definition (Codimension). Suppose X a vector space and Xg — X.
Then the codimension of X, is codimx Xg := dim X/ Xo Also denoted
by just codim(Xy) if there is no confusion.

Claim. codim.cy = 1.

Proof. Let (1,),en be the sequence with all elements 1. We want to
show that {(1,)nen} is a basis of ¢ . Let (x,)nen € ¢, and suppose
lim, z, = x € K. We have [(zp)nen] = [#(1n)nen], since z(1,)nen is
just the sequence with all elements z, and clearly lim,, (z, —z) =0 =

(Tn)nen—2(1n)nen € co. That s, [(zn)nen] = [#(1n)nen] = 2[(1n)nen]-
We're done. O

Remark 2.1. There is an isomorphism from ¢4, to K: [(z)nen] =
lim,, z,,.

Example 6. Consider X = R?, Xy — X with dim Xy = 1. It is easy
to see that Vo € R, the coset containing x is just translating X, such
that 0 is translated to x. And

X/Xo = {Xo} U {all lines that are parallel to X }.

Now we want to define a norm on X/ X An intuitive norm is the
distance between X, and the coset.

Definition (Norm on X/XO). Define

11 %, = Boo. o] = inf 2 —y.

The norm in is the usual norm in R2, see Example 1.

We should verify that || || is actually a norm. That is
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Figure 3: X, Xy and points of X/X0

Question 2.2. Verify that :

L Vo] € Xy, el > 0 and [|z]] =0 <= 2 = Xo;
2. V] € Xrx,  lIklall| = [k - [l

3. (M) + Wl < Nl + [HTl-

Proof. For 1: Only needed is to show that ||z]] = 0 < 2z = Xj.
Here we use Theorem 2.1 and a trivial fact:

Fact. X is a closed subset of X.

Now suppose [z] € X/ X, satisfying [|[z]|| = 0. By definition, we
have infyex,|lz —y|| = 0. From the definition of infimum : Vn €
N3y, € Xo such that ||z —y,| < 1/n, therefore we have a sequence
(Yn)nen € Xo converging to . From the theorem below, we know
x € X, so [z] = X as we wanted.

2: It holds naturally when & = 0. If k& # 0, it just follows from
property of norm and k1 X = X,.

3: Intuitively , we have

IIlz] + []]l

Il + 9l
= inf -2
nf fla+y - 2

IN

nf (o= 2]l + lly - 2I)

inf || — inf ||y —
nf fla = 2] + inf [}y — 2]

]l + ]Il
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So easy, isn’t it? However, look at the <, this inequality is non-trivial
and we should prove. By simple application of definition of infimum,
we find: the inequality is reversed! But (4) can be corrected: Ve > 0,
dz. € Xg,w: € Xg such that

|z — z|| < inf ||z —z|| + /2 = ||z|| + &/2,
z€Xo

ly —wel < inf [y —2[| + /2 = |ly| + /2.
zeXo
Therefore we have

. - _ < .
Jof (o =zl +lly — 21D < [l + llyll +&
Since ¢ is arbitrary, we know inf.cx,(||z — z|| + |ly — z||) < ||z]| + [Jy]|
and then ||z +y|| < [|=| + [|y||-
However, this is wrong again. Since z. may not coincide with w;.
To fix this, write

o+ 9l = g fla+y— (4w, (%)

By (5), and |l +y — (2 + w)|| < ||z — 2| + |ly — w|| , we use the defini-
tion of inf for inf,cx, ||z — z||, infwex, ||y — w|. We can find z.,w. as
above and get ||[z + y]|| < [|[z]|| + ||[v]]| + &, we're done.

Above all, || || is actually a norm. O

Remark 2.2. We define the topology of linear normed space as follows:

Definition (Topology of linear normed space). Let (X, || ||) be a linear
normed space. Then there is a natural metric on X, thatisd: X x X —
R>o, (z,y) = ||z — y||. The topology induced by this metric is called
the (usual) topology of (X, | |]).

Now we have a topology of X, and we have a result characterizing
the closed subsets of X.

Theorem 2.1. Given a linear normed space X with Xy < X. Then,
X is closed if and only if for all (2,),eny € Xo such that lim, z,, =
r € X, we have x € Xj.

Remark 2.3. A quotient semi-norm in X/ X, is a norm if and only if
Xy is closed.
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2.2 Lecture 2-2
2.2.1 Metric Spaces

Definition (Metric, Metric Spaces). Let X be a set. d: X x X - R
is called a metric, if d satisfies:

1. Va,y € X:d(z,y) > 0and d(z,y) =0 < z=y.
2. Va,y € X: d(z,y) = d(y, ).
3. Va,y,z € X:d(x,y) +d(y, z) > d(z, 2).

The ordered pair (X, d) is called a metric space.

Remark 2.4. Every metric space has a topology, we will discuss this
later.

Remark 2.5. Let’s compare normed spaces and metric spaces: normed
space need linear structures but metric spaces don’t need. A normed
space (X, | |) is naturally a metric space by the metric induced by
norm d: X x X - R, (z,y) — ||z —y].

Remark 2.6. Let X be an arbitrary set, we can define a metric on X
by the Kronecker symbol §.
Example 7. (R",d) is a metric space, where

n

d: R" x R" — R, ((xl,...,xn),(%w-wyn)) = (Z(xj _yj)2>1/2.

Jj=1

Example 8. (RY d) is a metric space, where

N N 1 |z —y,l
d: R X R” = R, ((zn)nen, (YUn)n »—>§ — 9
(( Jnen, (Yn) EN) 2 29 1+ |2 — ]

d is well-defined, since the series can be dominated by Z;’;l 1/27. To
verify the triangle inequality, we use the monotone function f: [0, 00) —
[0,1),z = x/(1+ ). So, |x; —y;| + |y; — ;| > |x; — 2;| implies

25 —yil +lys =2zl o w5 = 2l
Lt oy —ysl + |y — 2] = L4 |25 — 2l

and clearly the left-hand side is no more than f(|z; — y;|)+f(ly; — z;)-
Sum for j € N and we’re done.
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Example 9. Let (£, F, ) be a measure space with () < co. Let
Ly(£2) be the space of all F-measurable functions from € to K, written
Lo for short. Define

Z:={f € Ly(Q): f(x) =0 for p-almost every z € Q},

the (linear) subspace containing all functions equal 0 p-almost every-
where. Now consider the quotient space EfVZ. We define

d: Lo/g x Lo/ R

[f — 9l (6)
f+Z2,9+2)— ————du.
( 7 T -l
Integrand on the right-hand side can be dominated by 1q , hence

the integral is finite. The definition of d involves the selection of repre-
sentative element, so we should verify that d is well-defined. Suppose
f+Z=f+4+Z,9=¢ + Z, and suppose f, g is finite everywhere, then
JA1 : p(Ar) = 0 Vz € A f(z) = f'(2);
Ay p(Ag) =0V € A g(z) = ¢'(x).

Then f(z)—g(z) = f'(x)—¢'(x) forall z € (A1UA2)° and u(A1UAy) =
Lf—gl

—~
EN|
~—

0. Therefore f —g = f' — ¢’ u-almost everywhere, and hence T —g]
[f'—g']

=] p-almost everywhere, implying that their integration coincide.
Above all, d(f + Z,9+ Z) = d(f' + 2,9’ + Z) whenever f — [’ €
Zg—g €z

Proof of “d is a metric” is the same as the previous example.

Example 10. These are all metric spaces, since they are linear normed
spaces: £p, co, ¢, C([a,b],K), L,, R™.

Definition (Convergence in metric space). Let (X,d) be a metric
space. A sequence in X, say (2, )nen € X. We say (2, )nen is conver-
gent to z € X, if lim, d(x,,z) =0 . (n)nen 1s

convergent to z is usually denoted by (2, )nen i> x or (Tp)neny — x if
there is no ambiguity.

Example 11. Suppose X is an arbitrary set. (X,0) is a metric space,
where § means the Kronecker symbol. Then

(Tp)ney > o < IN eNVn> N z, = .
Example 12. Consider ((C[a,b],K),d), where

d: (C[avb}’K) X (C[a7b]aK) - Ra (fvg) = fﬁ%ﬂf*m
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Then (fn)nen A f <= (fu)nen converge to f uniformly, as we
learned in Mathematical Analysis.

Example 13. Recall (LO/Za d)a (f+zn)7L€N i f+Z — (fn)nEN ﬁ>
f-

Proof. Necessity:(f + Z,)nen LS f + Z means

=1
hm/ d =0.
1+|fn7 s

Given o > 0. Define a set EZ := {z € Q: |fu(z) — f(x)| > o}, we need
to show lim,, u(E?) = 0. By Chebyshev’s inequality:

p(Ey) =plr € Q: [fu(z) — f(2)] > o}

g, @)= @) o
_“{ 69'1+|fn(w)—f(x)l>1+0}
1+o \fn(x)—f(f)‘

== /E;1+|fn(3«“)—f(93)|dM
l+o | frn(x) — f(2)]
=0 2,5 4 2),

lim, d(f, + Z, f + Z) = 0 implies lim,, u(EJ) = 0, that is f,, & f.
Sufficiency: Given o € (0,1), we know:

{xeﬂzlfr};l }:{meg;”"n_

This implies that 1J‘rf"}7f ‘f\ 0.

Now, from the dominated convergence theorem (1g being the dom-
inated function, here we need p(2) < co), we have:

lirrlnd(fnJrZ,erZ): hrn/ 1_57'} =

Q" 1+|fn |

=0. O
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Topology of metric spaces

Definition (Topology of metric space). The topology of a metric space
(X, d) is generated by the base

B={B(x,r): x € X,r € (0,00)},

where B(z,r) :={y € X: d(y,z) <r}.
Remark 2.7. Now we can define these things for metric spaces:

e Interior points of a set.

e Interior of sets.

e Limit points of a set.

e Derived sets.

e Closure.

e Isolated point.

e Boundary.
Fact. For a metric space (X, d):

1. A set Gisopen <= Vre G Ir >0 B(z,r) CG.

Proof. Sufficiency is trivial. For necessity, since each open set is
union of bases, then x € G must lie in a open ball contained in
G, and we can find some r > 0 such that B(x,r) is contained in
the open ball. 0

2. Intersection of open sets may not be open. For example,

() (=1/n.1/n) = {0}.

neN

Definition (Continuity for maps between Metric Spaces). Let (X, dx),
(Y, dy) be two metric spaces. Wesay f: X — Y is continuous at ¢ € X,
if Ve > 0 3r > 0 such that f(B(xz,r)) € B(f(x),¢). [ is continuous if
f is continuous at every x € X.

Theorem (Continuity’s Equivalent Conditions). Let (X, dx), (Y,dy)
be two metric spaces. A map f: X — Y is continuous at z if and only
if V(zp)nen € X (limy, , =2z = lim, f(z,) = f(z)).

Page 25 of 198



2.2 Lecture 2-2 2 WEEK 2

Proof. Suppose f is continuous at z and (x,)ney — z. Ve > 0,
by continuity of f at @, Ir > 0 such that f(B(z,r)) C B(f(z),e).
For this 7 > 0, by convergence of (z,)nen, AN € N such that Vn >
N z, € B(z,r) and hence Vn > N f(z,) € B(f(z),e). Therefore,
lim,, f(z,) = f(z).

Suppose Y(zp)neny € X (limy, 2, =2 = lim, f(z,) = f(x)). If f
is not continuous at x, by definition of continuity,

Jeo > OV5 > 03y € B(x,8)f(y) ¢ B(f(x),<0).

In particular, take 0, = 1/n. Then there is y, € B(z,1/n) and
f(yn) ¢ B(f(z),20). Now we have a sequence (y,)nen converge to
z but lim,, f(y,) # z, contradiction. Therefore, f must be continuous
at z. O

Definition (Continuity for maps between Topological Spaces). Let
(X,T), (Y,U) be two topological spaces. We say f: X — Y is contin-
wous if VO e f~1(O) € T.

Theorem (Equivalence of Definitions of Continuity). f: (X,d) —
(Y,d) is continuous if and only if f: (X, 74,) — (Y, T4, ) is continu-
ous.

Remark 2.8. Here we mean f: (X,d) — (Y,d) is continuous, if it
satisfies the definition of continuous maps between metric spaces. And
“f (X, Tax) — (Y, Ty, ) is continuous” means it satisfies the definition
of continuous maps between topological spaces.

Proof. Suppose f: (X,d) — (Y,d) is continuous. Since (Y, 7z, ) has
the topology base

By = {B(y,r):yEY,re (0,00)},

it suffices to show that VB(y,r) € By we have f~'(B(y,r)) € Tay.
Suppose f~!(B(y,r)) # @, else it’s automatically open. Since f(z1) €
B(y,r), 3ry > 0 such that B(f(x1),71) € B(y,r). Using the continuity
of f at x1, 36 > 0 such that f(B(xz1,6)) € B(f(z1),m1) € B(y,7).
Therefore B(xz1,6) € f~*(B(y,r)). This means f~*(B(y,r)) contains
a neighbourhood for each point of itself, and hence f_l(B(y,r)) is
open.

Suppose f: (X,Tay) — (Y,Ta,) is continuous. Then Vz € X,
f7Y(B(f(z),r)) is open for all r > 0. z € f_l(B(f(x),r)) and

f7H(B(f(z),r)) is union of sets like B(zg,dp), so we can suppose
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x € B(xzg,0p) for some zp € X,5p > 0. Now choose 6 > 0 such
that B(z,d) C B(xg,d0) and we have

F(B(,)) € F(Blro,d0)) € (£ (BU(),7)) € B (@),7).

We’re done. O
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3 Week 3

3.1 Lecture 3-1
Recall

Every linear normed space (X, || ||) has a metric (induced by its norm)
d: X x X - R, (z,y) — ||z — y||. This is surely a metric, ensured by
the properties of norm. However, a metric space (X, d) need not to be a
linear normed space, since it is possible that X has no linear structure.

Now, suppose (X, d) a metric space, where X is a linear space. We
have a question: is there some norm || || such that d is induced from
Il [| 7 If there is a norm that we want, it is clear that || ||: X — R,z —
||| := d(x,0). We want || || is a norm, so it should satisfy:

1. || [ > 0and ||z|| =0 <= x = 0. This holds, since d is a metric.
2. Vk e K,z € X,d(kz,0) = |k|d(z,0). This should be satisfied.
3. d(x,0) + d(y,0) > d(x + y,0) as the triangle inequality.

Moreover, d should satisfy d(x + z,y + 2z) = d(z, y), since (x4 2) — (y +
z) = x —y. In fact, the following conditions ensure that d is induced
by a norm:

Condition 1. d(kz,0) = |k|d(z,0).
Condition 2. d is translation-invariant, that is d(z+z, y+z) = d(z, y).

Suppose d satisfies condition 1 and condition 2, then it is enough to
show that || || satisfies the triangle inequality.

Proof.

|2+ yl| =d(z +y,0)
=d(z +y,~y +y)
ﬂ% )
<d(z
=d(x

We’re done. O

Here comes an important notion of functional analysis.
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3.1.1 Banach Space

Definition (Banach Space). A complete linear normed space (X, || ||)
is called a Banach Space.

Here the word “complete” should be defined.

Definition (Completeness). A metric space (X, d) is complete if every
Cauchy sequence in X converges.

Definition (Cauchy sequence). Let (X,d) be a metric space. A se-
quence (z,)neny C X is said to be a Cauchy sequence, if

lim||z,, — z,| = 0.
m,n

Remark 3.1. Here {||z,, — 25| }m, nen is a double index real sequence,
and “the double index limit is 0 ” should be interpreted as

Ve > 03M € NIN € N(Vm > MV¥n > N |||z — x| — 0] < ).

Warning. Convergent sequence must be Cauchy sequence (from def-
inition), while Cauchy sequence may not converge (as the following
examples).

Example 14. Let d: RxR — R, (z,y) — |z — y| be the normal metric
on R. Consider (Q, d|g, ). This is not a complete metric space, since
Q is dense in R and for arbitrary 2 € R we can find a sequence (2, )nen
that converges to x in R. Consider x € R\ Q and we get a sequence in
Q, that is Cauchy in (Q, d|g, ) and doesn’t converge to any r € Q. W

Example 15. Consider (C[0,1],]| ||,,), where || ||, means the norm

[ lz,: Cl0,1] = R, f [ ]\f|dm.
0,1

This is a norm, since ||f||,, =0 <= |f| = 0 m-a.e, and continuity
of f ensures f = 0. Other conditions for norm is trivial. And this is a
incomplete normed vector space, since C[0, 1] is dense (with respect to
the norm || ||, ) in L.

From now on, Cj|a, b] means (C[0,1], ] ||, )- ]

Remark 3.2. The completion (which will be defined the next class)
of Cpla,b],1 <p < oois Ly[a,b], since Cla,b] is dense in Lq[a,b]. N

Example 16. Let Pla,b] := {Polynomial functions defined onla, b]},
then the linear normed space (P[a, b], max(, y| |) is incomplete. Since
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3f € Cla,b] such that f is not a polynomial, such as f = expl, 5
Suppose exp: R — R is defined as the power series for convenience.
Then by Weierstrass Approximation Theorem, for each fixed € >
0, there is some p € P[a, b] such that maxy, ;|p — f| < e.

In fact, for f = exp\[mb], it is enough to take

max(q p]| |

By the result in power series theory, we know p, f. |

Now we compare two normed spaces sharing the underlying set
Cla,b]. Cla,b] means the normed space (Cla, b], maxj, )| |) somewhere.
And we will prove the completeness of Cla, b].

Normed space Cla,b Cpla,b]

Underlying set Cla,b Cla, b]
Norm maxg p]| | I,

Completeness | complete | incomplete

Proof of completeness. Let (f,)nen C Cla, b] be a Cauchy sequence.
That is
Ve > 03N € NVm,n > Nr[nab)](|fm — fal <e.
a,

Therefore, given any x € [a, b] we have

| fn(2) = fulx)] < I[neﬁclfm — ful <e.

s

That is the sequence ( fn(x))n oy IS a Cauchy sequence. By the com-

pleteness of R, ( fn(x))n ey converge. Then we can define a function
fi]a,b] = R,z — lim f,,(z).

lim,, f,,(z) is surely a real number, as explained above. And we have
two claims.

maxX(q,p)| |

Claim. f, 1.

Vn > N, we have

max|fm — Jn| <E&.
nax fn = ful
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It’s equivalent to

|frm(2) = fu(2)| < e(Va € [a,b]),

and let m — oo, using the continuity of | | (to change the order of lim,,
and | |)
|f(x) = fu(2)| <e(Va € [a,0]),

which is equivalent to

— Jn| <E.
g[lg;f]lf fal <e

I

maxiq p| |

Therefore, f,
Claim. f € Cla,b].

It suffices to show that f is uniformly continuous. Given arbitrary
e > 0, by the convergence of (f,,)nen

ANVn > Nr[nzz)]dfn — fl <e/3.

Fix this N, and the continuity (equivalent to uniform continuity for
functions on [a, b]) of fy ensures that 30 > 0 such that

Vavy(lz —y| <6 = |fn(x) — fn(y)] <e/3).

And VaVy such that |x — y| < 0, we have

[f(@) = f)l < |f(2) = In (@) + v (@) = In @)+ [ (y) = )]

I[nzﬁ(\fN—f|+s/3+r[n%)>]<\fN—f|

e/3+¢/3+¢/3

=¢&.

IA

A

Thus f is uniformly continuous. O

Example 17. Suppose 1 < p < co. then L,(Q,F,p) is a Banach
space.

Proof. First, suppose 1 < p < oo. Here is a proof different from
our textbook. Suppose (f,)nen is a Cauchy sequence, then (f,,)nen is
Cauchy in measure (by Chebyshev’s Inequality). By the lemma, 3 a
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subsequence (fy, ) en such that f,, — f p-a.e.. Therefore, by Fatou’s
Lemma:

il £, = £ =t [ [, = 17

/ liminf|f,, — f|” dp
Q J
=0.

While the inequality should be reversed. This can be corrected:
50 = £ = [ inl g, = 1"
< liminf / | o, — I dis,
J Q

and

(£, = fIf, = tim [ Tin|fo, = ful"dp

n; Q

IN

lim lim inf / | fo, = fol” it
Q

n; n

= 0.

1l
So fu, — f. Minkowski’s inequality shows

Let nj,n — oo and use the fact that (fy,)nen is Cauchy in norm, we

Iy,
have f, —— f

If , we are done. fis a p- a.e. limit of (fy;);jen and hence is
measurable. Minkowski’s inequality shows

1y < AL = Fosll, + (155 -

The first term is bounded (since the real sequence has limit 0), and the
second term is finite since f,,; € L,.

Then, suppose p = oo. There is (Amn)mnen € F such that
W Am.n) =0vm,n €N and

Vw € A:ﬁ,n |fm(w) - fn(w)l < ||fn - fm”oo'
Clearly for A := Uy, n>14m,n, We havep () = 0. And we have
Vw € A\ fn(w) = frm(W)| < [[fo = finll -
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Let m — oo
Vw € A fn(w) = fw)] <lm|fr = finll

and hence

an - f”oo < hnrlann - f'm”oo-
Let n — oo and use
lim lim|| fr, — finl|lo, = 0.
We’re done. O

Lemma. Let (9, F,u) be a measure space, and (f,)nen € Lo(f2) is
Cauchy in measure, where

Lo():={f: Q@ — (K, B(K)) that is measurable}.

Then there is a subsequence (gp,)nen Of (fn)nen such that g, — f u—
a.e.. Here f € Lo(Q).

Proof. We can choose a subsequence (g, )nen = (fn].)jeN such that if
Ej :=|g; — gj+1|"'[277, 00) then u(E;) <277,

Set Fj := ;> Ej then p(Fy) <30y 277 = 2l-k,
d! If x € Fy, for i > j > k we have

1—1 i—1
19:(x) = gj ()] <D g () —gi(w)] <Y 27 <2t
1=; 1=

which ensures that Vo € F¢, (g, (a:))j is a Cauchy sequence. Let

eN

F= ﬂ F; = limsup Ej,

i>1 ’
we have u(F) = p(lim; F}) = lim; u(E;) = 0. -

Exercise 3.1. Prove that ¢, is complete when 1 < p < oo.

Page 33 of 198



3.1 Lecture 3-1 3 WEEK 3

Suppose (X, || ||) is a linear normed space. Let (2,)nen C X satisfies
> ns1llznll < 0o, and we can define the infinite sum for this sequence
as

N
an = nh—>HoloS”’ where S: N — X j— ij.

n>1 j=1

Proposition 3.1. (X, || ||) is a Banach space if and only if V(z,,)neny C

X’
Z||xn|| < oo = an < 0.

n>1 n>1

Here ), -, x, < 0o means ) -, &, exists for short.

Proof. Necessity: suppose X is a Banach space, then ), o, ||z, | < oo
implies -

P
Ve > 03N € Nvn > N(Z\\xn+ju <e(vp e N)>7
j=1

and therefore Vn > N|[S,1p — Snll < 22F_ [[n4;]l < €, this means
that (Sp)nen is a Cauchy sequence. X is complete, so (Sy)nen con-
verges. That is > -, z, < c0.

Sufficiency: suppose X satisfies the condition above. If X is not
complete, then 3(z,)neny € X that is Cauchy but has no limit in X.
Now, select a subsequence of (x,,)nen, say (x”j)jeN such that

VjEN ||an,,, —an,| <277

Define y: N = X, j = @y, ,, — Ty, then (y,)nen is a Cauchy sequence,
satisfying ‘
Vi eN [yl <277

Therefore, ~,>1 ||y;|| < oco. Then X satisfies the condition, which
implies that ) -, ¥, < oo. Equivalently, lim; x,; exists in X. While
(zn)nen is Cauchy, so lim,, z,, = lim, Tp, exists, that’s a contradiction
(see how we selected (2, )nen)- O
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3.2 Lecture 3-2
Recall

1. L,(2) is complete. The outline of proof for p < oo
is here:

Step 1. Show that if (f,,)nen is Cauchy (in norm), then (f,,)nen
is Cauchy in measure.

Step 2. Show that (f,,)nen is Cauchy in measure, then (f,,)nen
has a subsequence (f,,);jen that converges to a measurable
function f p-a.e..

I
Step 3. Use Fatou’s lemma to show that (fy;);jen &) I

Step 4. Show that (f,,)nen L”—'# fand feL,

2. About quotient space. Given a normed space (X, || ||) and a closed
subspace Xy < X. We can define the quotient space

Xox, ={lel =2+ Xo: 2 € X},
whose norm is
z||| = inf ||z — y|| = inf .
il = inf i =yl = i 0]
The second equality can be verified by change y € [2] <= y =
T+ xg,x9 € Xo.

3. Norm and semi-norm (p, p(x) =0 == 2 =0). Let X be a linear
semi-normed space, with the semi-norm p. A familiar linear semi-
normed is £,(1 < p < 00). Let Xo :={x € X : p(z) =0} — X.

Claim. X, is closed subspace of X (so, X/ X, is allowed, see
Remark 2.3

Proof. X is a linear subspace, since p is a semi-norm.

p is a continuous map, since the triangle inequality holds. Then
N = p~1(0) must be closed. O

Now, Remark 2.3 ensures that || ||: X/X07 [z] = p(z) is a norm on
X
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Proof. It should be verified that p is well-defined (though this should
have been proved in Remark 2.3). Suppose [z] = [y], that is [x — y] =
[y — 2] = [0]. Since p is a semi-norm, we have the triangle inequality

p(z) +p(y — 2) > p(y),p(y) + p(z —y) > p(z),

and [x —y]l =[y—2] =0 = plx—y) = ply —x) = 0, that is
p(z) = p(y). Thus, [z] — p(z) is well-defined. And

W) )l =0 <= ple) =0 <= z€Xo=1[0] < [a =
(0]
(2) k=]l = [IF2]l| = p(kx) = |klp(z) = [E[[|]-
@) =l + [l = Iz + ylll = p(x +y) < p(x) +p(y) = [[=]] + [T
Above all, || || is a norm on [X]. O

3.2.1 Completion

In this class, X is a linear noremd space, unless otherwise specified.

Definition (Isometry). Suppose X,Y are two linear normed spaces.
We say X is isomtetric with Y, if there is a linear surjection T: X — Y
such that

[Tz|| = [lz]| (V2 € X),

or equivalently || ||, o T = || -

Remark 3.3. Isometry is automatically injective, since Tx = 0 <=
ITz|| = ||z]l =0 <= « = 0. That is kerT = {0}. Therefore, T is
automatically injective and hence bijective as we want.

Definition (Density). Let (X, || [|) be a liner normed space and Xo <
X. Xy is said to be dense in X, if Xy = X.

Question 3.1. How to verify Xg = X ?
Xo =X, if
Vo € XVe > 03z, € Xo(|jlz: — || <e.)
And equivalently
Vo € XVn € N3z, € Xo(||lz. — 2| < 1/n.)

That is, I(xn)neny C Xo that converges to .
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Theorem 3.2 (Existence of Completion). Let (X, || ||) be a linear
normed space. There is a Banach space (X, || ||) such that X is isomet-
ric to a dense subspace of X.

Remark 3.4. in fact, the completion X is unique up to an isometry
(but the definition of completion should be different).

Definition (Completion). A pair ()?, t) is called a completion of X, if
t: X — X satisfies Vo € X: ||¢(2)]| = ||z]| and ¢(X) is dense in X.

Proof. We will construct a completion of X. Let
E = {(zn)neny C X : (zn)nen is a Cauchy sequence},

and define p: &€ — R,z — limy, ||z, ||. Here lim,||z,| exists
in R, because (zn)nen is a Cauchy sequence implies that = (||, ||)nen
is a Cauchy sequence in R, and R is complete. Moreover, p is a semi-
morn on €. Now define N := p~1(0). Then N — £ and N is closed
(by the contlnulty of p). Therefore we can consider X = g/ N, with
the norm || ||: X—)R,x+Nl—>p( ).

Now, we prove this theorem in 3 steps.

Step 1. X is isometric to a subspace of X. Let Xo := {[(z)nen] : @ €

X} and
T: X — XO,ZC — [(l‘)neN] = (m)neN + ]\[7
where (2),ecny means the constant sequence (z,...,x,...). That
is, T(x) = (x,...,z,...)+ N. Clearly T is a linear surjection. We
want to show T is isometric, that is Vo € X, ||T(z)|| = ||z|. By
definition
1T(x)]| = [(@)nen]l

= p((l')neN)

= lim||z||

= llz[.

To sum up, T is an isometry as we want.

Step 2. Xy — X is dense. As discussed above, it suffices to show
that V[z] = (21,...,&pn,...) + N € X, there is a sequence in X
converge to X. Let

[x](m):N%[(xm) = (@my. s Tm,...) + N,
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and we prove that the sequence ([z("™]),,ey is convergent to [x].

-1
= li%nH(xm—xl,...,xm — Tp,y...)+ N|
= tim p((es — 22 )uer)
= liénli}lnﬂacm — Ty
=0.
Step 3. X is a Banach space. That is X is complete. Let ([2]™)nen

be a Cauchy sequence in X. By the density of Xg = T'X, we have
a sequence (Yn)nen C X such that

VneN HT(yn) e ™

<1/n.

Claim. (y,)nen is a Cauchy sequence.
We find that

[Ym — ynl
= 1T (ym) — T(yn)ll
HT(ym) - [x](m) H +

1/m+ H[x](m) — [z]™

)™ = o)

IN

+ | n) - 21

IN

+1/n.

Apply limsup,,, ,, on both sides and we have

lim sup||ym — ynl| < 0.

m,n

Therefore, (yn)nen is Cauchy, and (y,)nen € €. Now we show
that ([2]")pen — [¥] = (W15--+1Yn,...) + N. By definition of

Il
[[2]™ = T(ym) + T (ym) — [yl
I[z]™ = T (ym)|l + 1T (ym) = ]l

1/m +p((yn - ym)neN)
l/m + hTILn”yn - ym||7

I[=]™ = Y]l

ININ A
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and let m — oo, we have

lim sup||[z]™ — [y]|| < limsup 1/m + limsup lim||y,, — ym||-
m m m n

The second limit must be 0, since lim,, limy, ||y — ym|| = 0 (see
remark) . O
Remark 3.5. Here we explain why lim,, lim, ||z,, — z,| = 0. We may

want to write: suppose lim,, z,, = x, then
limlim||z,, — 2| = lim||x,, — 2| =0,
m n m

where the first equality is using the continuity of || || and the second
equality follows from the definition of lim, x, = z. Everything makes
sense, except lim,, z,, = x. Notice that is a sequence in X and none
said that X is complete.

So, why lim,, lim,, ||, — || = 0 holds? It suffices to show that we
have

lim lim d(xy,, x,,) = lim d(z,, z,) = 0.

whenever (z,,)ncn is Cauchy. See https://math.stackexchange.com/
a/633595/1061247.
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4 WEEK 4

4 Week 4

4.1 Lecture 4-1
Recall
No recall today.

4.1.1 Exercise course
We have only 3 exercises this course.

Question 4.1. Let (X, || ||) be a linear normed space, Xo — X. If X
is complete and X is closed then Xj is complete.

Question 4.2. Let (X,d) be a metric space. T: X — X such that
ax € (0,1)
d(T(x), T(y)) < Md(z,y),Va,y € X.

Prove that dlzg € X such that Tz = xp.

Remark 4.1. This result doesn’t hold when A = 1. To see this, con-
sider

And completeness is necessary too, consider and
T: X — X, . Other examples can be found.

Question 4.3. Let (X,]| ||) be a linear normed space. Then X is a
Banch space if and only if for each closed decreasing non-empty sub-
sets sequence (A, )nen, ﬂn>1 A, is a singleton set whenever we have
lim,, diam(A4,,) = 0. B

There are answers in the next section.
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4.2 Lecture 4-2
Recall

For all L.n.s (X, || ||), there is a Banach space X such that X = Xo = X,
where X is a dense subspace of X. It’s ok to say X = Xo < X and
hence X X. The proof has 3 steps: construction of X embeddlng
X to X and showing the completeness.

Remark 4.2. In the final exam and Phd qualifying exam, stating this
theorem and its proof is common.

Review of exercise class

Here are the proofs of the questions of the exercise class.

Proof of Question 4.1. Suppose (z,,)nen € Xo is a Cauchy sequence
in Xg, then (z,)nen is Cauchy in X. X is complete so 3z € X such
that (z,)ney — . Now, Xy is closed and hence z € Xy. Thus,
(Zn)nen — « € Xo. That is every Cauchy sequence in X is convergent
to some point z € Xy, which is equivalent to Xy’s completeness. O

Proof of Question 4.2. Let a be an arbitrary point in X. Define a
sequence inductively:

a, n=1;

Tp)neN: N—= X, n— x, =
(Zn)nen {T(xn_l), n>2.

Then (z,),en is Cauchy, because for all n > 2
d(anrla xn) = d(T(l‘n)a T(-'If'nfl)) < )\(l‘n, xnfl)-

By induction, we have d(x,11,2,) < A" td(z2,21), and hence

1
Zd(anrlaxn) < Z)‘n_ld(m%xl) = ﬁd(m%xl) < oo.

n>1 n>1

Therefore, the sequence (S, )nen is Cauchy, where
n
S:N=>Rn— S, := Zd(xj,a:j+1).

The triangle inequality implies that

Vm,n > 1(va'n, - Sm/\nfl Z d(xma (En)),
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which ensures that (z,,)nen is Cauchy (let Sy = 0 and then the inequal-
ity above always holds ). By the completeness of X, lzg € X such
that (2, )neny — 2. Now, the continuity ( from d(T'(z), T(y)) < Ad(x,y)
) of T implies

This proves the existence. Supppose there is y € X such that T'(y) = y,
then
d(y, o) = d(T'(y), T(w0)) < Ad(y, o).

A < 1 implies that d(y,z¢) = 0. Equivalently, zo = y. This proves the
uniqueness. O

Proof of Question 4.3. I think this proof is similar to the proof of
[5, Chapter 5, Thm 2].

Necessity: suppose X is a Banach space. Given a closed decreasing
non-empty subsets sequence (A4, ),en, choose z,, € A,, for each n € N.
This is possible since ¥n € N A,, # @. Since (4, )nen is decreasing, we
have

VYm,n € N(Zm € Aman, Tn € Aman),

and hence
(X, ) < diam Apypn — 0(m,n — 00).

Therefore, (x,)nen is a Cauchy sequence. Then the completeness of
X ensures that Ja € X such that (z,)ney — a. Vn € N, since A, is
closed and z; € A,, for all except for finite j € N, we have a € A,.
Therefore, a € (>, An. Clearly (), A4, cann’t have more than 1
elements. If so, 3y € A,¥Yn € N and hence diam(A4,) > d(z,y) > 0.
That’s a contradiction.

Sufficiency: suppose X satisfies the condition above. Let (z,,)nen
be a Cauchy sequence in X, define (A, )nen as follows

VYneN, A, :={z, € X :m >n}.

Then (A, )nen satisfies the condition for set sequence: clearly (A, )nen

is decreasing, and diam(A4, ) = diam(A) — 0 since (2, )nen is Cauchy.
The reason of diam(A4,,) = diam(A,,) is written in remark. Therefore,
dla € N,,>; An. Now, it suffices to show that (z,)nenw — a. This
follows from

d(zn,a) < diam(A,) = 0(n — o). O
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Remark 4.3. Vn € N, we want to show that diam(A,,) = diam(A4,,).
Since n _is fixed, we can omit the index. Given A C X and ¢ > 0,
Vr,y € A, there is x.,y. € A such that

[z —zell <e/2,lly —yell <e/2.
Therefore
e =yl < llz = 2ell + llze = yell + lye — yll < llze — el +

and use ||z: — y.|| < diam(A),

|z — y|| < diam(A) + «.
Since z,y € A are arbitrary, we have

diam(A) < diam(A) +¢.
And ¢ is arbitrary, so

diam(A4) < diam(A).

The reversed inequality is trivial.

4.2.1 Banach Fixed-point Theorem

Here we introduce a classical result about Banach spaces.

Definition (Contraction mapping). Given a metric space (X, d). Then
a mapping T: X — X is called a contraction if 3\ € (0,1) such that
d(T(x), T(y)) < Ad(z,y).

Remark 4.4. Every linear normed space (X,| ||) has the natural
metric d(z,y) = || — y|| and hence a contraction on (X, | ||) means
T: X — X, such that 3\ € (0,1),Vz,y € X

[T(z) = T(y) | < Allz —yll.
The # above means that T' may not be a linear map.
It is easy to verify that each contraction is continuous.

Theorem 4.1 (Banach fixed-point theorem). Suppose (X, d) is a com-
plete metric space and T is a contraction on X. Then dlzy € X such
that Txq = xo.

Proof. See the the proof of the second question. O
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Let’s have some applications. Suppose X is a Banach space and
U: X — X. We want to solve the equation U(z) = y.

Proof. To use 4.2.1, we should rewrite the equation U(z) = y as
T(x) = z for some T.

Ux)=y <= U(x)—y=0 <= Ux)+z—y =z,
thus consider T: X — X,z + U(z) +x —y. And
1T (w) = T(u)|| = [|U(u) + u—y = Uv) —v+y.

If it’s verified that T is a contraction, then 4.2.1 (Banach Fixed-point
Theorem) implies that T has a unique fixed-point, i.e. U(z) =y has a
unique solution. O

Example 18. X is a Banach space, on which U is a contraction. Prove
that U(x) = z + y has a unique solution.

Proof. We want solve U(z) —x =y, i.e. (U —id)(z) —y = 0. So the
discussion above tells us that we should consider T'=U —id +id —y =
U —vy. Let 21 € X be an arbitrary point. Define T'(z) = U(z) — y for
all n € N. Then T is a contraction since

IT(a) =T @) = [U(a) = U®),

and U is a contraction. Then use Theorem 4.2.1 (Banach Fixed-point
Theorem) and we’re done. O
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5.1 Lecture 5-1
In this part, X, Y are supposed to be two linear normed spaces (X, || ||),

YA D-

Recall

A map T: X — Y is said to be continuous, if

Iy

Vo € XVY(2n)nen LHEN z, (Tzn)neny — T

5.1.1 Bounded Linear Operators/Maps

Here is the definition of Bounded linear operators/maps

Definition (Bounded linear operators/maps). T: X — Y is said to
be bounded, if 3C' > 0 such that || ||, o T < C ||y, equivalently
|ITz|ly < C|lzlly, Yo € X. The set of all bounded linear operators
from X to Y is denoted as B(X,Y). If Y = X, B(X, X) is also written
as B(X).

Remark 5.1. 3C > 0: |Tz||y < C||z| v, Vo € X is not equivalent to
Ve e X3C > 0: ||Tz|y < Cllz| -

Remark 5.2. Usually we don’t distinguish map and operator, but a
functional should be distinguished (see the definition of Bounded linear
functional). [ |

It is easy to verify: a bounded map is continuous. Then it’s natural
to consider the inverse proposition. To do this, we define bounded sets.

Definition (Bounded set). Suppose A C X. If 3M > 0 such that
sup,e4llz|| < M, then A is said to be bounded.

Remark 5.3. T is a bounded map <= T maps bounded sets to
bounded sets.

Proposition 5.1. The following statements are equivalent.
1. T is continuous;
2. T is continuous at some point zg € X;

3. T is continuous at 0;
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4. T is bounded.
Proof. We prove in the following order

([

1 = 2: is done automatically.

2 = 3: Suppose T is continuous at xg, then V(z,)neny — zo we
have (Txy)nen = Tzo. Now Y(yn)nen — 0, we have (yn, +Z0)nen — Zo
since

(9 + 0) — 2ol = llgall = 0(n — o).

Thus, T'(y, + o) = T(xo) by T ’s continuity at z¢ and hence
1T () = Oll = T (yn + @0) — T'(wo)|| = 0.

Therefore, (Tyn)neny — 0 as we wanted.

3 = 4: Given T that is continuous at 0. If 7" isn’t bounded,
then there is a bounded subset of X, denoted by A, such that T'A is
unbounded. Replace A with |J,.,., tA, still denoted by A. By the
definition of unboundedness:

Vn € N3z, € A:||Ta,| > n.

Now we want a seuquce (yp)neny C A satisfying (||Tynl|)nen is un-

bounded. Take y, = x,/y/n, and we’re done. Since {y, : n € N} is
a bounded subset of A whose image under T is unbounded. That’s a
contradiction.

4 = 1: T is bounded, then T is uniformly continuous. O

Remark 5.4. There is another proof for 3 = 4, see the textbook.

Now, we have a set and it’s naturally to consider it’s linear structure
and topology. There is a natural linear structure on B(X,Y") as follows

i BX,Y) x B(X,Y) — B(X,Y)
(S,T) » S+T:=(z— S(x)+T(x)),

and

< B(X,)Y)xK — B(X,Y)
(S, k) mEk-S:=(x—k-S)).
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Definition (Operator norm). The operator norm on B(X,Y") is defined
as follows
| I: B(X,Y) = Rxo, T+ sup |[Tz|.
llzlI<1
It’s easy to verify that the operator norm is a norm on B(X,Y).
Remark 5.5. (B(X,Y),|| ||) is a linear normed space.
Remark 5.6. Equivalent definitions:

[T|
w£0 2] 2=

Proof. Since

T2l _
P

1
= —Tx
z#£0 ”x” x#0

[l
= sup

G|

= sup [|Tz||
le)=1

= sup [Tz
el <1

1
= sup gllTyll
0<llyll<s

1
< sup +—
o<llyi<s Iyl

1Tyl

vzo Iyl

1Tyl

And
ATz [T

z#£0 [Eal _y;«éo [yl ’

which ensures that the < above can be replaced with =. O

Definition (Bounded linear functional). An element of B(X,K) is
called a linear functional on X. B(X,K) is also called the dual space
of X, denoted by X*.

Remark 5.7. Discontinuous linear functionals exist (but only when X
is infinite dimensional. See this post).
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Example 19. Fix a = (an)nen € ¢1. Define
T:co— b1, 2= (Tn)nen — a- & = (anZn)nen. (8)
Show that:
1) T is bounded;
2) 7] = Jall.
Proof.

1) Recall that ¢y < (s is equipped with the norm || ||, = supy]| |-
Vx € cp, we have

1Tz]ly = lla- 2l

D _lans|

n>1

> lanlllzlo

n>1

lally [l -

IN

Thus pick C' = |[a||;, we have ||Tz|,, < Cl¢c|,,. This means
T € B(co, 41).

2) We have proved ||T|| < |la||,. Thus it suffices to show the reversed
inequality. From the definition of || ||;

n
Ve > 0dN € NVn > N : Z|aj| > [lall; —e.

j=1
In particular
N
> lagl > llall, — e
j=1
Now consider
codzy:=(1,...,1,0,0,...),
——
N terms
whose image under T is
N
1Tl = la| > [lall, — .
j=1
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lz]| ., = 1 ensures that
1T = Tenll, > llall, e
e > 0 is arbitrary, therefore ||T']| > ||al|,.
O

Remark 5.8. In fact, ¢ = ¢;. Here = means “isometrically isomor-
phic”.

Here is a left exercise:

Exercise 5.1. Consider X = C10, 1], with the norm x +— max 1j|z|.
Define the linear functional

1/2 1
f:X—>]K,ac+—>/ xdm—/ xdm.
0 /2

Here m is the Lebesgue measure on R. Show that:
1) f is a bounded linear functional (i.e. f € (C[0,1])");
2) [Ifll =1
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5.2 Lecture 5-2

Here is a remark for Exercise 5.1. We want to find « € C[0,1], ||z|| =
LIf@) =1, ie.

1/2 1
/ xdm=1/2,/ xdm=-1/2.
0 1/2

But this is impossible, by maxjo 1j|z| = 1 and the continuity of x. Now,
consider the approximation of z: Ve € (0,1/2), let

1, t€[0,1/2 —¢]
ze: [0,1] = Rt =< U(#), te(1/2—¢,1/2+¢),
~1, [1/2+¢,1]

where [ is the unique affine function determined by
(1/)2—¢e)=1,1(1/24¢) = —1.

Since |f(z.)] =1 — ¢ and |z.| = 1, we have | f|]] > 1 — e. Therefore,

IfIl > 1.

5.2.1 Some exercises

Here are exercises for this class.

Exercise 5.2. Given a measure space (2, F,p) and o € L1(€2). Let
To: Loo(R2) = L1(Q), 2 — a -z,
where « - ¢ means pointwise product. Try to find ||T||.

Solution: It’s natural to guess that || T,| = ||a||,. Holder’s inequality
implies that
ITa(@)lly = lla -2l < llaflllz]l«-

Thus, |To|| < |lel;. On the other hand,
Lo(@)32: Q- Kw—1
then ||z||, =1, and T, (z) = «, hence ||T4|| > ||«|;- O

Remark 5.9. We have proved this for u being the counting measure,
see 19.

Fact. A matrix ( with respect to the normal base) T' € K"*" consid-
ered as a linear map 7: K” — K",z +— Tz is bounded.
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Proof. Since K is equipped with the norm || ||: z — (Z?:1|xj|2)1/2

that is not very convenient. It ban be proved that || || < || <
V| |l So it suffices to show that T': (K", [|,) = (K", ||.) is
continuous. Suppose T' = (a; j)nxn- Now Vz = (z1,...,2,)" € K®

n n t
172l = {|( Y arsen .Y angan)
j=1 j=1

oo
n n n t
S Z (Zamxlék,j,...,Zanvjxnc;k’j)
k=1| j=1 j=1 -
n
t
<> (al,jxﬁk,jw--»an,jxn&c,j) ©)
k=1 j=1 0o
n n
= > law |- |z
k=1j=1
n n
< (D lansl) .
k=1j=1

Thus, let C := Z?Zl > r_ilak, ;| and we have proved || | o7 < C|| || ..
i.e. T is bounded. O

Claim. Each finite dimensional linear normed space X is linear home-
omorphic to K™.

Proof. Suppose K is equipped with || || and {a1,...,a,} is a base
of X. Thus there is a map

n
0: K" = X, (z1,...,2,)" = szozj,
j=1
which is a bijection from definition of base. And ¢ is bounded, since

n
lp(@r, - xn)llx < D lwsllaglly
j=1

<(Xlsly s )

Let C:= Y7, [layll ., then || [, o < C|l ||, and thus ¢ is bounded.

(10)
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Now we prove that ® := ¢~! is bounded. Given (z1,...,z,) € K"

such that

ijaj < ].,

i=1 <
i.e. an element in the unit ball of X. We prove that @(Z?Zl riay) =
(21,...,xp) lies in some ball of K™. {a1,...,a,} is a base for X, thus

a; # 0(Vj) and let § = miny<;<y|le; ]| > 0. Now

n n n
1> > wag)| = laglllag] = 6> las] = 62, @)t -
j=1 j=1 j=1

X
Therefore ||(z1,...,2,)", < 1/4, ie. H@(Z;.Lzl xjaj)H < 1/6. This
means that ® is bounded. ~

Exercise 5.3. Given a measure space (0, F, ) and a € Loo(92). Let
p be a real number fixed in (1, 00). Define

To: Lp(Q) = Lp(Q),x — - .
Try to find ||T.]|-

Proof. Let T denotes T, for short. First, ||T| < [Jaf| . : since |a(w)] <
ol for a.e. we Q, and

1/p 1/p
I7al, = ( / a2l dg) " < ol / 2l”dpr) " = llallJlell,

The reversed inequality needs a condition: “ Suppose L, # {0}.
Then VA € F such that u(A) = oo, 34 C A such that 0 < pu(Ag) <
o0”. Now, Ve > 0, consider the set E. 1= {w € Q : |a(w)| > [|of| . — €}

Case 1: pu(FE.) < oo for some €1 > 0. Since 0 < a < b implies
E, C E, by considering ¢ < &; we have u(E.) < oco. Then
XE. € Lp. And hence

1/p
ITxe. | (llell oo *@(fEE X, du)

1T > >
Ixe. | Ixe.|l

= [lall — &

Since € € (0,¢1) is arbitrary, we have ||T| < ||a| ..
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Case 2: p(E.) =oco foralle > 0. If 3A. C E. such that 0 < p(4;) <
oo and hence x4, € Ly, then

1/p
ITxal o (Il = &) (fa X, dn)
Ixall — x|

1Tl =

= llafle =&

Since € > 0 is arbitrary, we have ||T|| < ||| .-

For the case that there is some ¢ > 0 such that u(E.;) = oo and
p(A) € {00,0} for all A C E., we can’t prove that ||T|| > [la|
and there is a example such that |7 # |||, in this case.

Example 20. Consider the measure space (N, P(N), v) where u
is defined as the unique measure such that

v({1}) = oo, v(A) = card(A)(V1 ¢ A),

where card(A) is the number of elements of the set A when A is
finite, and oo when A is infinite. Now the function o = x{1y €
Lo(N,P(N),v) and Vf € L,(N,P(N),v) we have f(1) = 0.
Therefore

To: Ly(N,P(N),v) = L,(N,P(N),v), f— - f

is just a zero operator and hence ||T, | = 0 # ||| .-

Therefore, the operator
T: Lo(N,P(N),v) — B(LP(N,P(N), V))

has a nontrivial kernel ker T' > « # 0. O
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6 Week 6

6.1 Lecture 6-1

6.1.1 Compactness, Relative Compactness and Total Bound-
edness

Definition (Open Cover). Given a topological space (X,7). AC X
is said to have an open cover (O;);¢r if
AQU@.
il

Definition (Compact). A topological space (X, 7)) is said to be com-
pact, if each open cover of X has a finite subcover.

Remark 6.1. Compactness is topological invariant.

Definition (Relative Compactness). Let (X, T) be a topological space.
A subset F of (X, T) is said to be relatively compact, if its closure F
is compact.

Definition (Sequential Compactness). Let (X,7) be a topological
space. A subset F of (X, 7)) is said to be sequentially compact, if every
sequence (T, )nen C A there is a subsequence (2, )ren C (Zn)nen such
that (mnk)k‘EN —x € A.

Definition (e-net). Let (X, d) be a metric space. E C X is called an
e-net of A, if A CJ,p B(z,¢).

Definition (Total Boundedness). Let (X, d) be a metric space. A C X
is said to be totally bounded, if Ve > 0 there is a finite e-net of A.

Remark 6.2. This is not a topological invariant (since it needs a met-
ric), but is invariable under bi-Lipschitz mappings.

Now, we will compare the following notions in metric space: com-
pact sets, relatively compact sets and totally bounded sets.

Theorem 6.1. Let (X, d) be a metric space and A C X. The following
statements are equivalent:

1. A is compact.

2. A is sequentially compact.
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Proof. 1 = 2: Suppose A is compact while not sequentially compact.
Then 3(z,,)neny C A such that Va € A, a is not a limit point of (x,, )nen-
Thus

Va € AJe, > 0(3IN, € NVn > N, d(zn,,a) > €,).

Now we have an open cover of A, {B(a,e,) : @ € A}. Since A is
compact, there is ay,...,a,, € A such that

n
AC U B(ak,sak),
k=1

Let N := N, V ---N,,_ then znx ¢ Bl(ak,e.,)V1 < k < m. But
zn € A=, B(xk,q,). That’s a contradiction.

2 = 1: Let (O;)ier be an open covering of A. First, we prove that
I\ > 0 such that VO < r < A\Vx € A, B(z,r) C O, for some ¢ € I ( This
constant A is called an Lebesgue number of the open covering (O;);cr)-

If there is no Lebesgue number for (O;);cr, then Vn € N3z, €
A such that B(z,,1/n) is not contained in any element of (O;);er.
Therefore we have a sequence (zp,)nen. 2 ensures that (2,)nen has a
convergent subsequence (Z,, )xeny with its limit xg. Notice that zo €
0, for some ig € I and O;, is open, so Ir > 0 such that B(zg,r) C O;,.
From the definition of convergence, 3K such that Vk > K d(z,,, o) <
r/2. WLOG, suppose ng > 2/r. Now, Yy € B(zy,.,1/nk), we have

d(y, o) < d(y, Tny ) + d(Tny, To) < L +Ii<r
ng 2
This means B(zy,,1/nk) C B(xg,r). Since B(xg,r) C O;,, we get
B(zp,,1/nk) C O;,. That’s a contradiction with the selection of
(2n)nen. Therefore, there is a Lebesgue number.

Let A\ be a Lebesgue number, whose existence is proved above.
Then A has an open cover {B(z,A/2) : © € A}. Take arbitrary
x1 € A. If A C B(x1,)/2) we're done. Else, it’s possible to take
x9 € A\ B(x1,A/2). Similarly we can take x3,...,z,,... if possible.
This process must end in finite steps, i.e. we can only get a finite
sequence as above. If we get a infinite sequence (z,,)nen as above, then

A
d(Tm,Tn) > §,Vm #n.

That’s a contradiction since A is supposed to be sequentially compact.
Suppose we get a sequence having only m terms and then

AcJB(ad).
k=1

Page 55 of 198



6.1 Lecture 6-1 6 WEEK 6

Recall the selection of A, x, ensures that B(zy, A/2) lies in an element
of (O;);er for each k. Therefore (O;);ecr has a finite subcover. O

Theorem 6.2. Let (X, d) be a metric space and A C X. The following
statements are equivalent:

1. A is relatively compact.

2. V(zp)nen € A, I(@n, )ken C (Tn)nen such that (z,, )ken 4 e
X.

Remark 6.3. Notice that (z,, )ken 4 2 € X but not (Zn,, ) keN Lae
A.

Proof. We use Theorem 6.1 to prove this theorem.

1 = 2: Suppose 1 holds, then A is compact, Theorem 6.1 implies
A is sequentially compact and hence 2 holds.

2 = 1: Suppose 2 holds, then clearly € A. Now we want to
prove that A is compact. 1 means that it suffices to show that A is
sequentially compact. Given an arbitrary sequence (z,)neny C A, we
want to show that there is a subsequence z,, .y — @ for some z € X.
Since (2, )neny € A doesn’t mean that (z,,)neny € A, we should find a
sequence (yn)nen C A such that x,, ..y — = whenever y,, .y — 2.
By the property of closure: we can define (y,)nen € A such that

Vn € N Ty, Tn € A;
n S Yn =
Y xh, xn ¢ A, € Ad(x,,x,) < 1/n.
Now 2 implies that 3(yn, )ren such that (yn, )reny — = € X, and hence
(Tn, )ken — = € X as we want. O

Theorem 6.3. Let (X, d) be a metric space and A C X. The following
statements are equivalent:

1. A is totally bounded.

2. Y(xn)nen € A, Ixn,)ken € (n)nen such that (z,, )ken is a
Cauchy sequence.

Proof. 1 = 2: proof given by our professor is omitted here and should
be found in your notes. And the “another proof” is not very different
from this.

“Another proof” of 1 = 2: suppose A is totally bounded. Given an
arbitrary sequence (z,)neny € A. WLOG, suppose (2, )nen has infinite
distinct terms, else we’'re done. Ve > 0 there is a finite e-net of A.
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Thus for each k¥ € N there is a finite e-net Fy for A. Let Jo = N
and define Jy O J; D Jo O --- inductively as follows. Suppose Jj is
defined. Since Fj41 is finite and Jj is infinite, for each n € Jj there is
an element pyi1 € Fiy1 such that the ball B(pgy1,1/(k+ 1)) contains
infinite elements of {z, : n € Ji}. Let

Jrt1 :={n € Jp : d(xn,pr+1) < 1/(k+ 1)}

Now, let n; € Ji be an arbitrary element. And inductively select
ng+1 € Jr41 such that ngi1 > nk. We have defined a subsequence
(Zn, )ken. Ve > 03N € N such that 2/N < e and hence Vj, k > N we
have d(z,;,pn) <1/n; <1/N, d(z,,,pn) < 1/N. Therefore

(T, Tn,) < d(Tn,,pN) +d(Tn;,pn) <1/N +1/N <e

by the triangle inequality. Now (x,, )ken is a subsequence of (zp)nen
that is Cauchy.

2 = 1: Suppose A satisfies 1. If A isn’t totally bounded, then
Jeg > 0 such that A has no finite g-net. Thus pick an arbitrary point
z1 € N and X \ B(z1,¢0) # @ ( ). Pick
an arbitrary point xo € X \ B(z1,€0) and pick x5 similarly. We have
defined a sequence (z,,)nen inductively, satisfying

d(Tm, zn) > eo(Ym # n),

which implies that (z,,),en has no Cauchy subsequence. That’s a con-
tradiction. Therefore, A must be totally bounded. O

Corollary 6.4. Let (X, d) be a metric space and A C X. Then

1. A is compact = A is relatively compact = A is totally
bounded.

2. Ais compact = A is closed and bounded.

3. Suppose A is closed. Then A is compact <= A is relatively
compact.

4. Suppose X is complete. Then A is relatively compact <= A is
totally bounded.

5. X is compact <= X is complete and totally bounded.

6. X =K", then A is bounded <= A is totally bounded «<— A
is relatively compact.
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Proof. We imply some results from the point set topology course.
1: (X, d) is a metric space and hence a Hausdorff space. Compact
sets in Hausdorff space is closed. Therefore A = A and A is compact,
i.e. A isrelatively compact. The definition of compactness ensures that
A is totally bounded.
2: A is closed as talked above. To see that A is bounded, consider
an arbitrary point zy € X and the open covering

{B(z,r): 7> 0}. (11)

(11) is an open cover of A. Compactness of A means that there is a
finite subcover of (11), which ensures that A is bounded.

3: Since A = A.

4: A is totally bounded if and only if for all (2, )nen € A, (Tn)nen
has a Cauchy subsequence i.e. a convergent subsequence. Therefore,
A is totally bounded if and only if A is sequentially compact i.e. A is
compact.

5: Necessity follows from 1 and 6.3. Apply 4 for sufficiency.

6: Heine-Borel theorem [5, Chapter 5, Thm 14| implies this. O

Remark 6.4. The inverse proposition of 2 is incorrect. Consider
(R,d;) where d; is defined as

di: RxR =R, (z,y) = [¢(z) — ¢(y)],

where

x
o:R— (-1,1),z— pamt
Then (R, d;) has a closed and bounded subset that is not compact: R,
itself. But clearly (R, d;) has the same topology as the usual topological
space R. Therefore (R,d;) is not compact since the open covering
{(n,—n) : n € N} has no finite subcover.

In fact, (R,d;) = R. Here = means there is a homeomorphism.
Thus “boundedness” is not topological invariant.
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6.2 Lecture 6-2
Recall
Let X,Y be two linear normed spaces.

e T:X — Y issaid to be bounded/continuous, if 3C' > 0 such
that || [ly o7 < C|| [[x (ie. [|T] <C).

e X =2 Y means that X is isometric to Y, i.e. IT: X — Y such
that T is linear, surjective and satisfies || ||y, o T = || || -

Definition (Isomorphism). X is isomorphic to Y, if there is a linear
surjection T" and Cq,Cy > 0 such that

Cill llx < Hly < Call llx

and this T is called an isomorphism from X to Y. X is isomorphic
to Y is denoted by X ~ Y.

Remark 6.5. In the category Vectyk, an isomorphism is a linear bijec-
tion and vice versa. In the category Nor: Ob(Nor) are normed spaces
and Mor(Nor) are bounded linear maps. An isomorphism in Nor is a
linear homeomorphism. In the category Nor;: Ob(Norq) are normed
spaces and Mor(Nor;) are contraction operators. An isomorphism in
Nor; is an isometry. In this notes, X = Y means that X is isometric
to Y and X ~ Y means that X is isomorphic to Y.

6.2.1 Finite Dimensional Linear Normed Spaces

Definition (Equivalent norms). Let (X, | |;), (X,| |l5) € Ob(Nor).
We say || ||, is equivalent to || ||5, if Ja,b > 0 such that

all lly < [y < oIl 1l

Remark 6.6. ~ is an equivalent relation between norms on X, as you
should verify.

See the definition of Isomorphism and we get || ||; ~ || || if and
only if
id: (X, [ ) = (X ), 2 =

is an isomorphism.

Example 21. Consider (R", || ||,) and (R™, || ||,). Clearly
[y (| PRVZEY

and hence || [l ~ || || -
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Theorem 6.5 (Classification of Finite Dimensional Spaces). Let X €
Ob(Nor) with dim(X) = n < oo, then X ~ K".

Proof. WLOG, suppose K" is equipped with || || . Consider

n
0 K" = X, (x1,...,25) — ijozj,
i=1

where {aq,...,a,} is a base of X. ¢ is proved to be continuous because
n
o, za)llx < D laslllagl
j=1

IN

n
Dol szl eyl
j=1

< (zn:aj||)||(a:1,...,xn)lloo-

Then let
O: K" =R, (21,...,25) = |lo(z1, .y 20)| x-

Now ® = || || x o ¢ is continuous. Hence ® obtains a minimal value on
S={zeK":|z||, =1}. Suppose § = min ®|¢ (such ¢ exists, since
S is compact). Then 6 > 0 since || ||y is a norm and 0 ¢ S. Now we
have V0 # (z1,...,z,) € K,

B(x1,...,2,) = ||(x1,...,xn)||ooq><M)

(@1, 2n) |
= [CPRRREE 2] I
ie.
(@, s an)llx = 0ll(@r, - 2n) |- (12)
(12) holds for V(z1,...,7,) € K" and means that ¢! is continuous.
Above all, ¢ is a linear homeomorphism, i.e. an isomorphism. 0

Remark 6.7. Consider min ®| is natural, just like

IT|| = sup [Ty

lzll x=1

Corollary 6.6. Let (X, || ||) € Ob(Nor).

1) dim X = n implies that X is complete.
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2) X is an arbitrary linear normed space and X, — X such that
dim(Xy) < co. Then Xj is closed.

3) dim(X) < oo implies that £(X) = B(X).

Theorem 6.5 implies that: if dim(X) < oo, then A C X is compact
if and only if A is closed and bounded. But it is not true for some (all,
in fact, see Theorem 6.8) infinite dimensional normed spaces.

Example 22 (A closed bounded set that is not compact). Consider ¢o
and its base {e,, : n € N}, where

en:=(0,...,0,1,0,...),Vn e N.
n—1 terms

Proof. B :={e,:n € N} is what we want.

e Bisclosed: consider an arbitrary convergent sequence (., )nen C
B, then there is some m € N such that z,, = e,, for all but finite
many n € N, because |le,, — e,|| = /267, Thus (2, )nen — €m €
B.

e B is bounded: since diam(B) = v/2.

e DB is not compact: since (ep)neny € B is a sequence having no
convergent subsequence. Thus B is not sequentially compact and
hence not compact. O

Lemma 6.7 (Riesz). Let X be a linear normed space and X, —
X, Xy # X is a closed subspace. Then

Ve € (0,1)3z. € X(|Jze|| = 1 A d(ze, Xo) > )

Proof. Taking arbitrary 2’ € X \ X, then d(z’',Xo) > 0. Let d =
d(z', Xp), now d/e > d and hence
3z € Xol|z — 2'|| < d/e.

Taking z. := %, then ||z.|| =1 and Vz € Xq

T—a — ||z -2z

[ze — || =

1z — /|
1

. |

1z — ']
> €.

Tz =]

The last inequality comes from ||Z — 2’| < d/e and ||y — 2’| > d, where
y=7I— ||z — 2|z € Xo. O
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Theorem 6.8. Let X be a linear normed space and B(0, 1) is its closed
unit ball. The following statements are equivalent:

1. X is finite dimensional.

2. 9B(0,1) is compact.

3. B(0,1) is compact.
4. VA C X, A is closed and bounded if and only if A is compact.

Proof. We want to show that

L

We get 1 = 4 from Theorem 6.5, 4 = 3 is trivial and 3 = 2
since a closed subset of a compact set is compact.

It suffices to prove that 2 = 1. Consider proof by contradiction.
Suppose dim(X) = oco. Let Vz; € X such that z; # 0. Consider
the closed linear subspace span {z;} (this is a closed linear subspace,
see the third corollary of Theorem 6.5). From Lemma 6.7, there is
x9 € X \ span{z;1} such that ||z2|| = 1 and d(x2,span{z1}) > 1/2.
Then consider the closed linear subspace span {x1,x2} ( that is closed
by the same reason as span{z;}), span{z1,22} # X and Lemma 6.7
implies that there is x3 € X \ span{z1,z2} such that ||z3]] = 1 and
d(xs3,span{x1,22}) > 1. Thus, We can define a sequence (zp,)nen C
0B(0,1) inductively such that

Vm # n, d(Tm, Tn) > 1/2.

Therefore, 9B(0, 1) is not sequentially compact and hence not compact.
Above all, X is infinite dimensional implies that 9B(0,1) is not

compact. Thus 2 = 1. O

Summary

We have proved that

1. dimX < oo = X ~ K" and hence:

(a) The space X is complete;

(b) Every finite dimensional subspace of an arbitrary linear no-
rmed space is closed;
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(¢) Two spaces coincide: £(X) = B(X).

2. Riesz’s Lemma = Theorem 6.8 which gives equivalent descrip-
tions of finite dimensions.
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7.1 Lecture 7-1

7.1.1 Construct more Linear Normed Spaces

Let (X, ]| ||v) € Ob(Nor),1 < i < n. Define

X?lei = f[ Xz
i=1

with operations
k(z1,...,zn) U y1, -y yn) = (kx1 + lyr, ..o kxn + lyn).

Vp € [1, 0], define a norm on X = X, X;
- 1/p
I lv: X =R, (21, ... 20) (ZHxin ) .
i=1

At the case of p = oo, ||z|| should be interpreted like || || . To see that
| || is a norm, it suffices to show that

1. it’s positive definite;
2. it’s homogeneous;

3. triangle inequality holds. And this follows from the Minkowski’s
Inequality for £, since

- P\ 1/P
o +yll = (Dl +will”)
i=1

< (el + el?)”

=1

" / i /
< ()" + (lwl?) "

=1 =1

The first inequality comes from the triangle inequality of || ||y and
the second inequality comes from the Minkowski’s Inequality:

[Clalls- s znlls 05 g, + 1yl llynll, 05 i,
Z [zl lyalls - lnll + lyall 0l -

Now, we have some questions
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Question 7.1.

1) Let p;: X — X, (21,...,2,) — x; be the projection to the i- coor-
dinate. Show that p; is continuous and ||p;|| = 1.

2) X =X_,X, is complete <= all X, is complete.
Proof.
1) On the one hand: V& = (21,...,z,) € X, we have ||p;(z)| = ||z

and
ol (me) > ]

Thus ||p;]] < 1. On the other hand: taking z = (0,...,x;,...,0) €
X with o; # 0 € X, we get ||pi(2)| v = ||zl = ||=]| v which
implies ||p;|| > 1.

2) Sufficiency: taking an arbitrary Cauchy sequence

({L‘m)mEN = ((mgrlz)7 oo 7x%))meN
in X. Then
g%xn xz()z’) _ gggi) . < |lzp — x4l — 0(p, ¢ — o0),

which means that (x%))meN is Cauchy in X; and hence converges
to some 3 € X;. Then

limz, = Y, ...,y =yeX

Because

n
limllz, — il = tim (D[l =y

Therefore X is complete.
Necessity V1l < i < n, X; is isometric to F; — X, where
;={(0,...,2;,0,...) : & € X;}. The isometry is

ti: X; = Ej,x— (0,...,2,0,...).

Ei=(p;"
J#i
is a finite intersection of closed sets. Thus F; is complete since X
is complete. And now, X is isometric to a Banach space. We're
done. O

E; is closed, since
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7.1.2 Unbounded Linear Functional
This proposition gives a description of unbounded linear functional.

Lemma 7.1. Let X € Ob(Nor) and f € £(X,K) is an unbounded
linear functional. Then

f(B(0,r)) =K,Vr > 0.

Proof. Given an arbitrary o € K, v # 0 there is 2’ € B(0,r) such
that |f(z')| > || (else, f maps a bounded ball to a bounded set and
hence f is bounded). Taking z = ﬁx’ , we’re done since

x/

1@ =1 (555%) = 70 /@) =@

and = € B(0,r) since

|

|/ ()]

] = 12/} < fl2"[} < 7. B

By lemma 7.1, we have

Proposition 7.2. Suppose f € X* and f # 0. The following state-
ments are equivalent:

1) f is continuous;
2) ker f is closed.
Proof.

1) = 2) {0} is closed in K and 2) follows from the topological defi-
nition of continuity.

2) = 1) ker f is closed and hence is not dense in X since f # 0.
Therefore

Jzg € X3r > 0(B(zo,7) Nker f = 2.) (13)

You can check (13) by denying the proposition “ker f is dense
in X”. If f is not continuous, then Lemma 7.1 ensures that
f(B(0,7)) = K. Thus, 3y € B(0,r) such that f(y) = —f(z0).
And now

fly+m0) = f(y) + f(wo) =0,

i.e. y+xo € ker f while y+xz¢ € B(xg,r). This is a contradiction
since B(xg,r) Nker f = @.
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Exercise 7.1. Determine which of the following sets are closed
1) M:={z€ly:) o an/v/n=0}

2) M:={zxetly:) - x,/n=0}

Solution. In fact, 2) i; simpler.

1) We will not prove this, because f: ¢ — K is not well-defined. There
is an element in f5:
0 n=1
z:N—-Kn— 1
vnlogn nz

such that f(z) ¢ K.

The set in 1) can be proved to be not closed by the theory of
Hilbert Space.

Proof. First, M+ = {0}. Let x € M1, then for all n € N:
r Le —vne, € M = z, =1/ynx;.

Thus,
00> Y o = o1 [* Y 1/n = 21 =0,
n>1 n>1
and hence xz — 0. O
2) Let
=1

iy =K x— — Ty, 14
f 2 , L niz:lnx ( )

Clearly f is well-defined. Furthermore, Vx € /5, we have
£ <Y Hea < (X 1/m2)
n>1 n>1

And hence M = £71(0) is closed. O

Remark 7.1. We have ||f|| = 7/+/6 by taking
loax=(1,1/2,...,1/n,...),

since ||z, = 7/v/6 and |f(x)| = 7% /6.
Remark 7.2. In fact,
=4,

P
where p € [1,00) and ¢ =p/(p — 1).
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7.2 Lecture 7-2
7.2.1 Theorems about Banach Spaces

Here are some topics of this lecture:

1. Open mapping theorem, see Theorem 7.3;

2. Banach-Steinhaus Theorem, see Theorem 7.6;

3. Hahn-Banach Theorem, see Theorem 9.1 and Theorem 9.2.
To state Theorem 7.3 better, we need a topological notion:

Definition (Open mapping). Let (X, 7),(Y,7T) be two topological
spaces and f: X — Y be an arbitrary map (not continuous possibly).
f is said to be an open mapping, if VO € Tx, f(O) € Ty.

And then we have

Theorem 7.3 (Open mapping theorem). Let X,Y be two Banach
spaces and T € B(X,Y). If T is surjective then T is open.

Proof of Theorem 7.3 is delayed to next (maybe) course.

Theorem 7.4 (Boundedness of inverse mapping). Let X,Y be two
Banach spaces and T € B(X,Y). If T is bijective, then T~ € B(Y, X).

Proof. Theorem 7.3 implies that T is an open mapping and equiva-
lently 7! is continuous. O

Theorem 7.4 implies

Corollary 7.5. Let (X, || ||;), (X, ]| [l5) be two Banach spaces. If 3C' >
0 such that || [|; <[ [ly, then [| [l ~ | ][,

Proof. Consider idx: (X, || [|) = (X, || ly)- |/l £ C| ||, implies
that idx is continuous. Apply Theorem 7.4 to idx and we get that
idy! is bounded. O

Theorem 7.6 (Banach-Steinhaus). Let (X, || || ;) be a Banach space,
(Y, ]| [ly) € Ob(Nor) and {Th}rer € B(X,Y). If

Vo € X, sup||Thz|y < oo,
Aer

then supycp |7 < oo.
The other name of this theorem is “the uniform boundedness prin-
ciple”.
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Proof. Here is a proof using the Corollary above.
Let || ||; be a new norm on X, defined as

72 X = R,z = [z x + sup||Thz]]y-
A€r

It’s easy to verify that || ||, is actually a norm. Clearly idx: (X, || ||;) —
(X, || Il x) is continuous. If (X, | ||;) is a Banach space, then Corollary
can be applied and we’re done. Now, taking an arbitrary Cauchy se-
quence (,)nen C (X, | |, ie.

lim|z, — x|, =0. (15)

And (15) is equivalent to

lim||z, — x| x =0, (16)
lim sup||Thz, — Thzml|ly = 0. (17)
M xel

Il 1l x

Since (X, || || x) is a Banach space, (16) implies that (z,)ney —— @ €

X. Now we prove that (x,)nen w» r € X and it suffices to show

that lim, supycr||Tazn, — Thz|ly = 0. And this proof is similar to the
proof of the completeness of Ca, b].
To see this, from the definition of limit of double indexed sequence:

Ve > 03N € N:Vm,n > N,sup||Tha, — Thaznmlly <e.
Ael

The definition of sup implies that
Vm,n > N, |Thz, — Tazmlly <e(VAeT).

Let m — oo, the continuity of || ||, and T (for each A € T') implying
that
Vn > N, ||Thzn, — Thz|ly <e(VAel).

Therefore,
Vn > N,sup||Thz, — Thz|y <e.
Equivalently,
lim sup||Thz, — Thz| =0,
n
which was what we wanted. O
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7.2.2 Baire Category Theorem
Definition (Gj-set, Fy-set). Let (X,7) € Ob(Top).
e A set of the form (),—; Gy, is called a Gs-set, where (G, )nen C T
o A set of the form [ J 2, F), is called a F,-set, where (F<),en C 7.
Remark 7.3. Here “G” is German (Gebiet) and “F” is French (Fermé).

Definition (First Category Set). Let (X,7) € Ob(Top). A C X is
called a set of the first category, if A C B for some F, set B with
B=go.

Definition (Second Category Set). Let (X,7) € Ob(Top). A C X is
called a set of the second category, if A is not of the first category.

Definition (Baire Space). Let (X,7T) € Ob(Top). (X,7) is called a
Baire space, if each countable intersection of dense open sets is dense
in X.

Here is an equivalent definition of Baire space

Definition (Baire space). Let (X,7) € Ob(Top). (X,T) is called a
Baire space, if each countable union of closed sets with empty interior
has empty interior.

And now we can talk about Baire category Theorem.

Theorem 7.7 (Baire category Theorem). If (X, 7T) is a topological
space whose topology 7 can be induced by a complete metric, then X
is a Baire space.

Proof. Suppose (X, d) is the metric space whose topology induced by
dis T. Let (On)nen be a sequence of dense open sets in (X,d). It
suffices to show that O =(,~; O, is dense in X. Taking an arbitrary
open set @ # U € T, now we show that ONU # @.

Since O is dense in X, we have O; NU # @ and thus 3z; € O1NU.
Moreover, Ir > 0 such that B(z1,7) CO1NU since O, NU € T. Let
F = (xl,r/Q) Then F1 #+ g, i C O1NU and diam Fy = r =:71.

Since Oy is dense in X and F1 # @, we have Oy N F1 # @ and thus
Jzo € O1 NU. Moreover, Jry > 0 A7y < r1/2 such that B(zq,rs) C
O N F1 Let Iy = B(Z‘Q,Tg) Then F2 75 g, F» € O, NU and
diam Fy < r1/2.

Analogically, we can define a sequence of decreasing closed sets
(Fy)nen such that F, # @(¥n € N), F, € O, NU(Vn € N) and
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diam F,, < 2'7"r(Vn € N). Then the third question of Lecture 4-1
implies that Jlzg € X such that

{z} =) Fu-

n>1
Therefore,
0nuU=(N0.) U= N©Ou)2 ) Fu={a},
n>1 n>1 n>1
and hence O NU # @. Since U is arbitrary, O is dense in X. O

Here is some results about Baire space:
Theorem 7.8. Let X be a Baire space. Then
1) Each open subset of X with the subspace topology is a Baire sapce;

2) Suppose ([, )nen is a sequence of closed subsets of X with X =
Un21 F,,, then Un21 F,, is dense in X.

Proof.

1) For A C X, let cl4 means the closure operator with respect to
the subspace topology of A. Similarly, int means the interior
operator.

Suppose Q C X is open. Given (Oy,)nen C Q such that clg(0,,) =
Q(Vn € N), i.e. O, is dense in Q for all n € N. Since clg(0,,) =
QN O, we have O,, O Q and hence O,, 2 Q. Since the closure
of union is the union of closure, we have O,, U (ﬁ)c is dense in X
for all n € N. Therefore,

(Unner := (0L ()°)

neN

is a sequence of dense open sets in X. Now X is a Baire space,
which means ﬂn21 U, is dense in X. While

and hence
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To prove that clo((),,~; On) = €, we want to show that (ﬁ)c C
Q¢. And this holds

@°ca — @) co.

since (ﬁ)c is the smallest closed set containing (ﬁ)c
Above all, 2 is a Baire space.

2) Let Q) # & be an arbitrary open set in X. Then 7.8 implies that
is a Baire space. And

Q=anx=J@nF,),
n>1

the definition of Baire space ensures that there is some n € N
such that int(2 N F,) # @. Since “the interior of intersection is
the intersection of union” and € is open, we have Q N F,, # &.

Therefore ) )
Qm(UFj) DONF, 2.
j>1
Then ﬂn21 F,, is dense in X since (2 is arbitrary. O

Now we give another proof of Theorem 7.6 by the Baire category
Theorem.

Proof of Theorem 7.6. Let

M: X = R,z — sup||Thz|y,
el

which is well-defined by the assumption. For all n € N

Fyo=M710,n) = (Y (I lly o Tn)~'[0,n],
Ael

and || |y, Ta(VYA € T') is continuous. Therefore, F;, is closed. Now X is
a Banach space (hence a Baire space) and

X:UFn.

n>1

Theorem 7.8 shows that there is some k € N such that M, # . There
is g € Fj, and r > 0 such that Bx(xg,r) C Fy. Now Vz € Bx(xq,T),
x + xo € Bx(xo,7) and hence VA € T', we have

ITx(@)lly < [[Ta(z + zo)lly + [Ta(2o)lly < K + M (o).
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Thus T(Bx(zo,7)) € By (0,k+ M(zo)) holds for all A € I, which
implies

1T <

k4 M(zo) o,
r

Above all, sup,cr||Th| < (k+ M(zo))/r < oo. O
Remark 7.4. To give X = Un21 F,,, we need the assumption

Ve e X: M(z) < co.
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8 Week 8

8.1 Lecture 8-1
Recall

We have proved Theorem 7.8 by Open mapping theorem. We used the
corollary 7.5 and proved that cod(idx) is a Banach space, where

idoe s (X[ lx) = (X1 L+ supllfly T
S

is continuous.
Moreover, we proved Baire category Theorem and applied it to
prove Banach-Steinhaus Theorem.

8.1.1 Application of Banach-Steinhaus Theorem

Definition (Strong convergence). Let X,Y be two normed spaces,
(Th)neny € B(X,Y) and T € B(X,Y). We say that (T, )nen converges
to T strongly, if

Vo € X, (Th)nen M Tz,
denoted as (T}, )nen SN

Remark 8.1. The relation between (T},)nen — T and (T, )nen M)

T is similar to the pointwise convergence and uniform convergence of
function sequence.

We use Banach-Steinhaus to prove the following theorem about
strong convergence.

Theorem 8.1. Let X be a linear normed space, Y be a Banach space,
and (T,)neny € B(X,Y) is a sequence of operators. Suppose

L sup,en|| ol < oo;

2. 3G C X such that G = X and Va € G, (T),x)nen converges in
Y.

Then there is a T € B(X,Y) with ||T| < liminf, . ||T5|| such that

T, > T(n — o).
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Proof. Let M := sup,cy||Tn||. Since G is dense in X, Vo € X and
Ve > 0, there is y € G such that ||y — z|| <e. Then

[Thz = Tpzl| < [Toa = Toyll + 1 Toy — Tyl + 1Ty — Tz
< Tl = yll + 1 Tny = Tyl + [Tl ly — 2|
< 2Me + HTny - TmyH

Let m,n — oo and use the strong convergence of (T},)nen, we find

limsup|| Tz — Tz < 2Me.

m,n

From arbitrariness of ¢ > 0, we get lim,, ,||T2z — Tzl = 0, ie.
(T, x)nen is a Cauchy sequence in Y and hence converges to some point
in Y, because Y is a Banach space. Therefore, we can define

T: X »Y,z— limT,x,

which is linear since both T, (Vn) and lim,, is linear (i.e. T is a com-
position of two linear maps, f1: X — £, — (Tp2)nen and fo: € —
Y, (Yn)nen — limy, y,, where & is the set of all Cauchy sequences in Y.
Then T = f5 o f; is linear.

Now we show that, T is what we want. For all z € X,

ITz| = |tim T,z ] = lim|| Tz,
since || || is continuous. And Vn € N, | T, z|| < ||T.||||x|, take lim inf on
both sides and we get

lim inf|| T, x| < liminf||T,|||z]. (18)

And (||Tz||)nen is a Cauchy sequence in R, thus lim||T,,z|| exists in R.
Then 18 implies

|Tz|| = lim||T,z|| < liminf|T, |||z (Vo € X)

S0
[T < liminf||T],

which ensures that T' € B(X,Y). O

If X is also a Banach space, then the inverse proposition holds.
That is:

Proposition 8.2. Let X,Y be two Banach spaces. Suppose there is
some T € B(X,Y) such that (T},)nen — T, then
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L sup,en|| ol < oo;

2. 3G C X such that G is dense in X and Vo € G, (T,x)nen
converges in Y.

Proof. For all z € X, (|T,z|)nen is a Cauchy sequence (and hence
bounded) in R by strong convergence. Then Theorem 7.8 implies that
sup,en||Tn|| is finite. Let G = X then G = X and Vz € G, (T, 2)nen

converges in Y, since (T}, )pen — 7. O
To state the next theorem better, there is an essential exercise.

Exercise 8.1. If Y is a Banach space and X is a linear normed space,
then B(X,Y) is a Banach space. Especially, X* is a Banach space.

Proof of this exercise is written in the Appendix B. Note that the
exercise is just saying that B(X,Y) is complete in the meaning of the
metric induced by the norm, then you can see that the next theorem
is just saying that B(X,Y) is complete in the meaning for “strongly
Cauchy sequence converges to some operator strongly”.

Theorem 8.3. If X,Y are Banach spaces, then V(T},)nen C B(X,Y)
such that
T, — Ty = 0(m,n — 00), (19)

we have
T, —T 3 0(n — o0)
for some T' € B(X,Y).

Proof. Since (19) implies that Vo € X, (T,,2)nen is a Cauchy sequence
in Y. Since Y is a Banach space, (T,,x),en converges to some point in
Y. Notice that Yz € X, (|| T,2||)nen in bounded in R, thus Theorem 7.6
implies that sup,,cy||7%| < o0, so let G = X, apply Theorem 8.1 and
we’re done. O

Inverse of Holder’s inequality

We have learnt the Holder’s inequality (especially, for the measure space
(N,P(N), ) ): Vp € [1,00], Va € £,,b € £,

lablly < llall,lIbll,

holds, where ¢ = p’. Now we’re going to show that if p € (1,00),
Vo € £, we have ) -, apx, < 00, then (ay)nen € £y, where ¢ = p'.
For convenience, consider K = R.
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Proof. Let

k

(VE € N)fi: by = R, (Tn)nen = Y _ x50,
j=1

Then fj, is linear, and bounded since Hélder’s inequality implies

k
izl <) lajoy)
=1

j=1 j=1
k
1/q
<(Dlesl) Vel
j=1

Le. || fr]l < (Z§:1|aj|q)l/q. And the reversed inequality holds, to see
this, consider the equality condition of Holder’s inequality (and triangle
inequality) and hence pick

0,5 2™ (@), en = (sign(aq)|ag |77, ... sign(ag)|ex|¥?,0,...).
And
IR (*) )
)fk(x )) = layl »)iﬂ H = (Z|0‘j| ) ,
=1 p j=1
implies
b 1-1/p b 1/q
1l = (Dlal) " = (Dleyl?)
=1 j=1

Above all, | i = (Z5_layl") "

By assumption, we have Va € £,,, (fn (x))neN
is bounded. Now apply Theorem 7.6, we get sup,,cy|| fnl < co. While
(Il fn])nen € R is a non decreasing sequence, thus

converges, and hence

. . b 7\ M1
sup|[full = lim || full = Tim (YJagl?) " = Jall,
neN n—00 n—o00 e

Therefore, [|af|, < oo, i.e. a € 4. O

Remark 8.2. We can drop the restriction K = R.
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Fourier series’s divergence

First, we introduce some notions for convenience.

Definition. Let C5; be the normed space whose underlying set is
{f: R— C| f is continuous and 27 -periodic},

with the norm

| lo: Con = R, f = sup|f(x)].
z€R

Remark 8.3. The norm max is well-defined since f is 27m-periodic
implies that
sup|f| = sup [f| = max]|f].
R [0,27] [0,271]
For clarity, here is the definition of period of a real function.

Definition (Period, Periodic function). Let f be a function R — R.
A number T' € R is called a period of f, if

f:TTfa

where
rf: R—=>Caxw— flx —T).

Function f has a period T is called a T-periodic function, or a pe-
riodic function for short.

Remark 8.4. Let

per(f):={T eR:7rrf = f},

then per(f) is a subgroup of the additive group R. The structure of
per(f) has only 3 possibilities:

1. per(f)={0}, i.e. f is not a periodic function.

2. per(f) = ToZ = {Tok : k € Z} for some Ty > 0. And such Tj is
usually called the fundamental period or the minimum period.

3. per(f) is a dense subgroup of R, equivalently f has no funda-
mental period. For example, per(xq) = Q.

The Fourier series of a 27m-periodic function is defined as follows
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Definition (Fourier transform, Fourier coefficient). Given f € Cagp,
the Fourier transform of f is the sequence defined as follows

7. 1 r —ind
f.Z%(C,nH%/inf(H)e de.

We use the notation

f(.]?) ~ Zaneinz
to mean that a,, = f(n),Vn € Z. The n-th term of f, f(n) is called the
n-th Fourier coefficient of f.
And define the partial sum of Fourier series

Definition. The n-th partial sum of f’s Fourier series, denoted by

Sn(f) is
—~ - —ikx __ - i " ik(0—x)
k;n Fk)e _k;n = /_ fo)e a.

To understand the partial sum better, we have to notations: con-
volution and Dirichlet kernel.

Definition (Convolution). Given the measure space ([—m, 7], B, u) and
two measurable function f, g, define

fxg: |-, = Ct—

J7_f(t—x)g(z)dp(z), if integral is finite
0. else

Here 1 is an arbitrary Borel measure on (R, B).

Fubini’s Theorem implies that, if f,g € £1][—m, 7|, then
2m

[ S mewage <o

for almost every t € [—m, 7.
Definition (Dirichlet kernel). Given n € N, the function
n .
D,:R—C,z~ Z etk
k=—n

is called the n-th Dirichlet kernel.
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By this definitions, we have a convolution formula for the n-th par-
tial sum of Fourier series

27

S.N@ = [ 50) 3 ) = Dy fla),
-n k=—n

where the convolution is taking integration with respect to the measure
5=, i.e. Lebesgue measure multiplied by 1/27.
Now, we have the following result.

Proposition 8.4. The set {f € Cax : sup,en|Sn(f)(0)] = oo} is a
dense G subset of Coy.

This means that, there are lots of functions in Cs,; whose Fourier
series diverges at 0.

First, we have a overlook about the proof
Sketch of proof. We have the following steps:
Step 1. Define a linear functional sequence (u,)nen as follows
Un: Cox — C, f — S, (f)(0). (20)
Check that (un)nen C B(Car, C).
Step 2. Show that sup,,cy/||un|| = co.
Step 3. Apply the following theorem.

Theorem 8.5 (Principle of concentration of singularity). Let
X be a Banach space, Y be a linear normed space and {u; €
B(X,Y) : i€ I} such that

sup||u; || = oo.
il

Then {z € X : sup,c|lui(z)|| = oo} is a dense G set in X.

And now we give the detailed proof.

Proof.
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Step 1. Define (up)nen as (20). Given n € N, we have

n

lun () = |Sn(£)(0)]
f(t) Z eikt

/71'
T k=—n

oo 1Dl

Thus Vn € N, u,, € B(Car,C) and ||u,|| < ||Dyl|;-

The reversed inequality holds. To see this, Ve > 0, take a finite
union of intervals (denote the union by I) such that m(l) <
me/(2n + 1). This is possible since D,, has only finite zeros in

[0, 271] (consider D, (t) = %) Now Define f

dm
27

IN

(t)

IN

1, x & INADy(x)>0;
f:10,2n] = C,z— < =1, a¢IAD,(z)<O0;
l(x), zel.

Here [ is the affine mapping on each subinterval of I such that f
is continuous.

| [ seD0G o)
- / p 05m )
= [1Da0l ) -2 o)
> 1Dl ~ e

The first inequality is just |z + y| > |z| —|y|, and the last inequal-
ity follows from

dm dm

0| < [1r Dl

< Wl [ 104150

< Nflle@n+1)-

I
27t( )
1 e

<|Ifllo@n+1)- o1
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since || Dy ||, < 2n + 1. From | f| =1, we get
unll > [|Dnll, — € (Ve > 0),

which implies ||uy|| > || Dnl|-

Above all, ||uy|| = ||Drl|]. Now we show that (||Dyl|)nen is un-
bounded. Let da denote dm(z) for short

™ |sin(n +1/2)z| dz
IDully = | —sov— o
_x sin(z/2)] 2m
1 (7 |sin(n+1/2)x]
?{/ x/2 dz

2n+41
2 T2 T s
_2 / lsinzl 4,
2 [ s
2 [ binal
n—1

Z/ﬂ |blnx|
x+/m

v

and

T |sin x| 1 T 2
dz > [sinz|de = ————.
0 T+ km (k+1)m J, (k+1)m

Therefore
"1 4
||Dn||1 > ?'I; E ~ ﬁlogn — OO(TL — OO)

Then, Theorem 8.5 implies the result.

Here is the proof of Theorem 8.5.
Proof of Theorem 8.5. Let

M: X — [0,00], 2 — sup||u;(z)].
iel

Define
F,={x€ X : M(xz) <n}(¥n € N),
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then £, is closed in X and hence §,, := F is open, for all n € N. Now
if F,, = @ for some m € N, then

{reX: M) =o0}= (),

n>1

hence {x € X : M(z) = oo} is a Gs-set. If {x € X : M(z) = oo} is
not dense in X, ie. [),>; 2y is not dense in X, then there is some
m € N such that €, is not dense in X, since X is a Banach space
(hence a Baire space). But Q,, # X implies that F,,, # @, thus the
proof of Theorem 7.8 works (but we should replace || T (zo)|| < M (xo)
with |Th(z0)|| < k), contradiction with sup,¢;||u;|| = oo. O
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8.2 Lecture 8-2
The aim of this lecture is
Aim. Prove the open mapping theorem.
We haven’t proved Theorem 7.3, which needs a strong condition: T’
is surjective. We will change this restriction weaker.
Recall

e A set B is called a set of first category, if B C a , where F' is a
F, set such that F' = @.

e A topological space (X, T) is said to be a Baire space, if for all
open set sequence (O, )nen such that O,, = X (Vn € N), we have

ﬂnZlCLl:‘X‘
1. A set O is open and dense in X if and only if O¢ is closed
and (O°) = @.

2. Let X be a topological space. Then X is a Baire space if and
only if for all closed set sequence (F,)nen such that F,, = &,
we have (U~ Fn) = 2.

8.2.1 Open Mapping Theorem (general version)

Theorem 8.6 (Open mapping theorem). Let X,Y be two Banach
spaces and T € B(X,Y). If T(X) — Y is a set of second category,
then

1. there is ¢ > 0 such that By C ¢T'(Bx). Here Bx, By means the
unit ball in X, Y respectively.

2. T is an open mapping.
Proof. In this theorem, for £ € K and A, B C X,
kA:={kr e X:xc A}, A+ B:={zr+y:xc Ayec B}
Similarly for A, B CY.

From X =J,~; nBx, we have

T(X) = |J T(nBx) € | J T(nBx),

n>1 n>1

and hence T'(X) C U5, T'(nBx). Thus T(X) is a Fy-set in Y. So
(Un21 T(nBx)) # @ (else, U,>1 T(nBx) is a F,-set containing T'(X)
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while having empty interior, contradiction with 7'(X) is a set of second
category). While Y is a Banach space, hence a Baire space, and there is
some m € N such that (T(mBx)) # @. Thus, there is yo € (T(mBx))
and r > 0 such that

Yo +rBy C (T(mBx)) C T(mBx).

Then

rBy CT(mBx)—yo C T(mBx) —T(mBx) C T(2mBx).

The second C follows from yo € T (mByx) and the last C can be easily
checked by taking sequences convergent to each point. Now we have

By C T(cBx),

where ¢ := 2m/r. And we want By C T(cBx). To see this, given
arbitrary y; € B(Y) C T(cBx), there is #; € ¢Bx such that

lyr = T(z1)|| <1/2,

from the definition of closure. Then ys := 2(y; — T'(x1)) € By, since
lly1]] < 1. Using the definition of closure again, there is x9 € ¢Bx such
that

ly2 — T(22)|| <1/2.

Now we define y3 := 2(y2 — T'(z2)) € By. And we can define two
sequences (T, )nen C ¢Bx, (Yn)nen C By inductively, such that

Ynt1 = 2(yn — T'(xn)).
Hence, Vn € N
y1 = y2/2+ T (1)
= y3/2° + T(x2)/2 + T(x1)

= Yt /2" 4 Y T(ay) /2

j=1

= Yny1/2" + T(Zn:%‘/?)v

j=1

Page 85 of 198



8.2 Lecture 8-2 8 WEEK 8

where ||yn+1/2"| < 27" since yn41 € By, Z?Zl x;/27 is absolutely
convergent since

ZxJ/QJ < Z||x]/2j|| < Z— < ¢(Vn € N).

and is convergent to some zy € cBx because X is a Banach space.
Therefore, by the continuity of T’

= i n /197
n= tm /2 T (w2

j=1

7 ($5)
o 3e)

Above all; By C T(¢Bx) = ¢T'(Bx). Then
Y = U nBy C U nT(cBx) = U ncBx) =
n>1 n>1 n>1

i.e. T is surjective.

To see that T is open, it suffices to show that T'(z + dBx) is open
in Y since {& + éBx : ¢ € X,6 > 0} is a topology base for X. While
T is linear, WLOG, it suffices to show T'(Bx) is open. Given = € By,
T(x) € T(Bx), there is 7, > 0 such that  + r, Bx C Bx and hence

T(Bx) 2 T(z) +r,T(Bx) 2 T(x) + rec ' By,
thus T'(Bx) is open. O

Remark 8.5. This implies Theorem 7.3, since T(X) = Y and Y is
a Banach space (hence a Baire space) implies T'(X) = Y is of second
category. Since Y is an open set that can’t be of first category.

8.2.2 Closed Graph Theorem

Some results in subsection 7.1 are used here.
This graph tells the relation between theorems.

Thm 8.6 == Thm 7.4

— |

Thm 8.8 <—— Cor 7.5 == Thm 7.6
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Now we talk about the Closed Graph Theorem. Here is the natural
definition of the graph of a operator.

Definition (Graph). Let X,Y be two sets (allowed to have structures
such as topology, norm and so on) and T': X — Y is a map. The graph
of T', denoted by G(T) is defined as

GT)={(z,y) e X xY :y=Tz} ={(z,Tz) e X xY :z € X}.

Remark 8.6. In this lecture, we assume X X Y is a linear normed
space, the norm of X x Y is

[l X <Y =R, (z,y) = [zl +[lyll,
if nothing else is mentioned. Equivalently, pick p = 1 by default.
Furthermore, we need this notion.

Definition (Closed Operator). Suppose X,Y are two sets, T: X — Y
is a map. Then T is said to be closed, if G(T') is closed.

Recall that, a sequence ((zn, yn))neN C X xY converges to (z,y) €
(X xY [ ,), if and only if

. . p p 1/p
tim | (2, ) = (@), = tim (e = 2] + g = yl”) " =0,

. Il Il
ie. (Zn)nen —= T A (Yn)nen —— .

Proposition 8.7. Let X, Y € Ob(Nor) and T € £(X,Y). Then

1. T is closed iff V(zp,)nen € X, ¥(yn)nen C y, Vo € X,Vy € Y such
that lim, z, = x,lim, T(x,) = y, we have T'(z) = y.

2. If T is bounded, then T is closed.

Proof. For necessity of 1: suppose T is closed. Then V(z,)neny C X
such that lim,, z,, = A lim,, Tz, = y, we have ((xn, Txn)neN
converges to (x,y) € X xY. While G(T) is closed, we get (x,y
thus y = Tx.

For sufficiency of 1: suppose T satisfies the latter condition in 1.
Given an arbitrary convergent sequence ((xn,yn))neN C G(T), ie.
(n)neny € X, yn = T(z,) for all n € N and (z,)ney — = € X.
Then the latter condition implies lim,, y, = lim, Tx,. And continu-
ity of T implies T'(z) = lim,, y,. Thus the limit of ((mn,yn))neN, ie.
(z,lim, y,) € X x Y lies in G(T). Therefore, G(T) is closed.

For 2, suppose T is bounded. Then the continuity of T implies that
T satisfies the latter condition in 1. O
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Now, the Closed Graph Theorem is

Theorem 8.8 (Closed Graph). Let X,Y € Ob(Ban). If T: X — Y is
closed, then T is bounded.

Proof. We know that X x Y is a Banach space, and hence G(T') —
X XY being a closed subspace of X xY is also a Banach space. Consider
the projection mapping

p:GT)—= X
(z,Tx) — x,

which is a linear bijection and ||p|| < 1 since

Vo € X,

p((@,T2))| =zl < llzl| + | T2]| = [|(z, Tz)|
Theorem 7.4 implies p~1 € B(X,G(T)). Therefore,

Ve e X, ||Tz|| < [le] + || Tzl

= ||(z, Tz)|
= [r™ @
< e~ llll v
Le. T < |lp7t|| < oo
Above all, T € B(X,Y). O

Remark 8.7. This can also be proved by Corollary 7.5: since (X, | || )
is a Banach space, and

(X AHx + [y o T) =G lxwy)

is also a Banach space, where the isometry is just T: X — G(T'). Then
Corollary 7.5 ensures Theorem 8.8.
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9 Week 9

9.1 Lecture 9-1

In this subsection, I will use the notation f < g lots of times, whose
meaning can be found here.

Recall

We have proved the relation between Theorems on Banach spaces, see
the graph in section 8.2.2.

9.1.1 Hahn-Banach Theorem

Today, here is going to prove Theorem 9.1 and Theorem 2. Zorn’s
lemma is needed here, see Appendix A.
There is an important object related to Hahn-Banach Theorem:

Definition (Sub-linear functional). Let X be a real linear space. A
real-valued function p: X — R is called a sub-linear functional, if

1. For all z € X, A > 0, p(Az) = Ap(x) holds;
2. For all z,y € X, p(z +y) < p(x) + p(y) holds.

Definition (Linear dual space). For a linear space X € Ob(Ling), the
dual space, denoted by X¥, is

X*:={f: X — K that is K-linear}.

The first theorem is irrelevant to topology, considering only linear
space.

Theorem 9.1 (Hahn-Banach). Let X be a real vector space and
X9 — X is a subspace. Suppose fy € Xg and p: X — R is a sub-
linear functional such that fo < p[y . Then there is (at least one)

f € X* such that (flx, = fo) AN(f <p).

Proof. We will prove this Theorem by Zorn’s lemma. Thus we need
to construct an partially ordered set whose maximal element is the
function we want.

Step 1: We construct the partially ordered set. Let

F = U {9 € D*: 9lx, = foNg < plp},
Xo—D—X
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where the union is taken over all subspaces D such that Xg <— D — X.
Define an order on F as follows

g1 < g2 <= dom(g1) <= dom(g2) A 924om(g,) = 91-

i.e. g1 < go iff g5 is an extension of g; in the sense above.
Exercise 9.1. Check that (F, <) is a partially ordered set.

Step 2: We prove that F satisfies the condition of Zorn’s lemma.
Given an arbitrary linearly ordered subset Fy C F. We prove that
Fo has an upper bound in F. Consider the set |J dom(g) =

dom (|J Fo). Define the linear structure as follows

+: dom ({ J Fo) x dom (| JFo) = dom (| JFo)

(v1,v2) = v1 +v,uw, V2,

gE€Fo

where V; € dom (U.FO) is a space containing v;, V3 UV, is a subspace
of dom (|J Fo) since dom (|J Fp) is linearly ordered and +v,uy, is the
natural addition of the subspace V; UV, (this is surely a subspace by
the linear order). Though it’s possible that v; € Vi N V{ vy € Vo NV
for some Vi,V] € Fp, the summation + is well-defined. WLOG, we
suppose Vi — V/ V5 < VJ by the linear order and then

V1 tViuV, V2 = U1 tvyuyy U2

since V3 U Vo < V{ U VY. And the scalar multiplication is just
- dom(U.Fo) xR — dom(Ufo), (v, k) =k -y o,

where V' € Fj is a subspace of X containing v. We can prove that -
is well-defined similarly. Above all, dom ( U }'0) is a vector space of X
and contains Xy. Now we define a linear functional on dom (U ]-"0) as
follows

h: dom (U]—'O) = R,v— g(v),

whenever g is an element of Fy such that v € dom(g). This is well-
defined by the property of Fy. And h € F is an upper bound for
Fo.

Step 3: apply Zorn’s lemma, thus there is a maximal element in F
and let f be the maximal element. We prove that f is what we want.
Equivalently, we prove that

1. fe Xt ie dom(f)=X;
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2. f|X0:fOS
3. f<p

Since f € F, we get f|yx, = fo and f < p|d0m(f). Thus it suffices to
show that dom(f) = X. Suppose there is an element g € X \ dom(f),
then

dom(f) +Rxg = {y + kxo: y € dom(f) Ak € R}

is a subspace of X strictly bigger than dom(f). We prove that f can
be extended to a linear functional fon dom(f) + Rz such that f e F,
which is a contradiction with f being a maximal element. In order to
define f, it suffices to check that f(xg) can be defined, since

Fly + ko) = f(y) + kf(zo) = f(y) + kf(zo)

is determined by f(zp). The only thing restricts the value of f(zg) is
f< p|dom(f)7 ie. Yy € dom(f),Vk € R\ {0} :

F + ko) < plyom() 0+ kz0), k> 0;
f(y + kIO) < p|d0m(f~) (y + kfﬂo), k< 07

ie. Yy € dom(f),Vk € R\ {0} :

(y + ko) /k — f(y)/k, k< 0;

ie. Vy,z € dom(f),Vk > 0,k' <0:

{ﬂxo) < ply + ko) /k — f(y)/k, k> 0;
>p

Flwo) < ply/k +x0) = f(y/k);
f(@o) > —p(=z/K — w0) = f(2/K').

Here I don’t care the case k = 0 since f(y) < p|d0m(f) (y) can be
deduced from f < p| dom(f)" Therefore, it suffices to show that Vy, z €
dom(f),Vk >0,k <0:

—p(=2/K —x0) — f(2/K') < p(y/k +x0) — f(y/k), (21)
And (21) holds. To sce this, we can set k = —k' = 1 and then
p(z — o) +p(y +x0) 2 p(y+2) = fly+2) = fly) + f(2).
Then (21) implies

sup S~ < inf ST.
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where

S™T = {-p(—z/K —x0) — f(z/K') € R: z € dom(f), k" < 0},
St = {p(y/k +z0) — f(y/k) € R: y € dom(f),k > 0}.

Then f(zg) can be taken as an arbitrary number in the interval
[sup S~,inf ST].
We're done. O

Back to linear normed space.

Theorem 9.2 (Hahn-Banach, general version). Let X be a linear
normed space over the field K and Xy < X is a subspace. Suppose
f € X{, then there is f € X* such that

1. f|X0 = f0§
2. ||f||x = ||fOHXg‘
In other words, f is an extension of fy with the same norm.

Remark 9.1. Before the proof, we should have an observation: a
complex vector space can be viewed as a real vector space. For the
detail, see Proposition A.2.

Proof. To use Theorem 9.1, I will prove the case K = R first, which
can be applied for the case K = C.

Case 1: K =R. Let p be the norm defined as follows

pi X = Row s [ foll s ol

Then p is a semi-norm such that fy < p|XU. Thus, Theorem 9.1
implies that there is a function f, an extension of f, that satisfies
f<p:foralxzeX

f(z)
fl@) = —f(-x)

Thus [£(2)] < p(x) and | flly. < [folly;, hence f € X*. The
reversed inequality holds since f]| x, = Jo-

(33),
—p(z).

IV IA
!
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Case 2: K = C. It can be shown that Vh € B(X,C), h is uniquely
determined by Reoh = Re(h) € B(X,R). For all z € X,

h(iz) = i(Reh(z) +iIlmh(z)) = —Imh(z) + iRe h(z),
take real parts for both sides and get —Im h(z) = Re h(ix). Thus
Vz € X : h(z) = Reh(z) — i Re h(iz).

Now, view X as a real vector space and suppose Vz € X, fo(z) =
go(x) —igo(ix), where go € B(X,R). Define

p: X = Rz lgollgixmllll-
Then apply the result in 9.1.1 and we get 3g € B(X,R) such that
(9|X0 = 90) A (9 < P) A (||9HB(X,R) = ||90||13(X0,R))~
Then f: X — C,z — g(x) — ig(ix) satisfies
(flxo = fo) A (Ifllx- = Il foll ;)

The first is trivial and the second is true if ||f||y. < ||f0||X3,
equivalently, Vo € X : |f(z)| < p(z). To see this, let

0: X = C,z — (signof)(x).

Notice that | |0 0: X — C is a constant function. Then Vo € X

= f(0(z) - x)
9(0(z) - )

||9||B(X,R) 0(z) - 2
= l9llsx vy - 10@@)] - llzll x

IN

= ||9||B(X,R) el
And
||g||B(X7]R) = HQOHB(XO,]R) < Hf0||X§~
Thereby, Va € X : ()] < | follxs lall, ie. [/l < Mollys- O

Theorem 9.2 is of great importance in the theory of “dual space of
Banach space”, which can be seen later.
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9.2 Lecture 9-2
Recall
We have studied

1. Theorem 7.6 (Resonance Theorem,/ Uniformly bounded princi-
ple):
Let X be a Banach space and Y be a linear normed space.
Suppose {Th}rea € B(X,Y) satisfies: Vo € X3M, > 0 such
that supyea||Thzlly < Mg. Then there is M > 0 such that
supren [ Tall < M.

2. Theorem 7.3(Open mapping Theorem):

(a) Let X,Y be two Banach spaces and T' € B(X,Y) is a sur-
jection. Then 7T is an open mapping.

(b) Theorem 8.6.

3. Theorem 8.8(Closed graph Theorem):

For a mapping T: X — Y. the graph of T is G(T) := {(z,Tx) :
x € X} — X xY. A mapping T is said to be closed if G(T) is
closed.

Let X,Y be two Banach spaces and T € L(X,Y). Then T is a
closed operator implies T' € B(X,Y).

4. Theorem 9.1 and Theorem 9.2 (Hahn-Banach Theorem):

Remark 9.2. This is one of the most important theorems for
functional analysis.

Here is an exercise that explains the name “Resonance Theorem”.

Exercise 9.2. Let X be a Banach space and Y be a linear normed
space. Suppose {Th}rca C B(X,Y) satisfies supyc,||T)|| = oo. Show
that Jz¢ € X such that supyc, || Thy|y = oc.

9.2.1 Review
Recall the definition of semi-norm

Definition (Semi-norm). Let X be a linear normed space. A function
p: X — R is said to be a semi-norm, if it satisfies:

1. For all z € X, p(z) > 0;
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2. Forall z,y € X, p(x +y) < p(x) + p(y);
3. Forall z € X,k € K, p(kz) = |k|p(z).
Here is another way to state “semi-norm”.

Definition (Sub-additive). Let X be a linear normed space. A func-
tion f: X — R is said to be sub-additive if

Va,y € X f(x) + f(y) < f(o) + f(y)-

Definition (Positive-homogeneity). Let X be a linear normed space.
A function f: X — R is said to be positive-homogeneous if

Ve e X,a €[0,00): flax) =af(zx).

Thus, a function p: X — R is a sub-linear functional if and only if
(p is sub additive A p is positive-homogeneous). Let

X' :={f: X = R f is sub-additive A homogeneous}.

Theorem 9.3. Let X be a linear normed space over R and p € X/,.
Suppose Xo — X and f € L(X,R). Then

1. 3f € L(X,R) such that f|y = f;
2. If fo < pl,, then f <p.

1 is equivalent to the following commutative diagram

XO—HR

N A

Remark 9.3. We’ve prove this theorem, see 9.1. Why we need Zorn’s
lemma here? Suppose X # X and zg € X\ Xy. Let M := span({zo}U
Xp) — X. Notice that dim (M \ Xo) = 1. Thus, bu Mathematical
Induction, we can prove the case dim (X \ Xo) < 00. To get rid of the
assumption dim (X \ Xy) < oo, we need “Transfinite induction” in some
sense, which is relevant to the Axiom of Choice (equivalent to Zorn’s
lemma). And how do we apply Zorn’s lemma? Recall how do we define
the partially ordered set (F, <).

Theorem 9.4. Let X be a linear normed space over K, X, < X and
fo S B(Xo,K) Then
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1. there exists f € B(X,K) such that f[y = f,ie. the following
diagram commutes

Xg— P g

N A

2. their norms coincide: || f]|x. = || foll ;-

Remark 9.4. Proof of this theorem (K = C case) needs an observation:
Vf e L(X,C), fis uniquely determined by Re f since

VI' € Xaf(x) = fl(x) - Zfl(ll'),
where f1 = Re(f).
Here is some corollaries of Theorem 9.4.

Corollary 9.5. Let X be a linear normed space over K, zo € X and
xo # 0. Then there is f € X* such that f(zo) = ||zo|| and || f|| = 1.

Proof. It suffices to show that there is some functional f € X* such
that | f(zo)| = [|zol|, since we can multiply f by a constant sign (f(zo)).
Let Xy := span{zo}, a subspace of X and

fo: Xo —>K,k‘~l‘0 — k- HJ?()H
Clearly Vk € K, [ fo(kzo)| < [klllzol| and [[kzol| = |k[[|zol, thus [|fol| <
1. And the inverse inequality holds, since
F(o/llzoll) = 1, lwo/llzolll| = 1.
Then apply Theorem 9.4, there is a function f: X — C such that
Flxo = fo NIfllx- = HfO”X*- And
f(@o) = [flx, (xo) = fo(xo) = [lol|- 0

For both Theorem 9.3 and Theorem 9.4, the extension doesn’t need
to be unique. But there is a result for some unique extension.

Exercise 9.3. Let X be a linear normed space and Xy < X is a dense
subspace. Suppose fy € X, then there is a unique f € X* such that
flx, = fo and ||f|| = [[foll. In other words, the following diagram

commutes.

Xo—L K
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Proof. Existence is ensured by Theorem 9.4.
Uniqueness: if there is another f’ satisfies the commutative dia-
gram, then

f|X0:fO: f/|X07

and two continuous functions that coincide on a dense subset must
coincide. O

Corollary 9.6. Let X be a linear normed space and x1,z2 € X satisfy
21 # xo. Then there is f € X* such that f(x1) # f(x2). In other
words, X* separates points of X.

Proof. Let zg := x1 — z2 and apply Corollary 9.5. O

Corollary 9.7. Let X be a linear normed space and zg € X. If
VfeX*: f(xg) =0 then

Proof. If xg # 0, apply Corollary 9.6 (set 1 = xg, 2 = 0) and get a
contradiction. O

Here is a related exercise.

Exercise 9.4. Let X be a linear normed space and {0} # Xy — X.
Suppose zg € X satisfies d(xg, Xg) = p > 0. Then there is some f € X*
such that f(zo) = p and fly =0
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10 Week 10

10.1 Lecture 10-1
Recall

Hahn-Banach Theorem is important, and here is an example of its
applications.

Theorem. Let X be a linear normed space, Xg — X and fy € Xj.
Then there is some function f € X* such that f[y = fo and |[f[/x. =

1follx;-
Proof. See Theorem 9.4. ]
And it has a corollary:

Corollary 10.1. Let X be a linear normed space and 0 # zg € X,
then there is some f € X* such that ||f]|y. =1 and f(zo) = ||zo]|.

Proof. See Corollary 9.5. O

Furthermore, recall the exercise that ensures the completeness of
X* = B(X,K). Here is a corollary shows the duality. Notice that
Vf € X" |Ifllx. = supjq <1lf(z)], where the sup is taken over all
f € X* such that || f|| yx. < 1.

Corollary 10.2. There is another representation of || || i, that’s Vo €
X

9

()

2]l x =

max ,
£l <1

where the max is taken over all z € X such that |lz||, < 1.

Remark 10.1. Notice that here we use max, rather than sup, i.e. the
sup is accessible.

Proof. WLOG, suppose  # 0. Let A := sup | . <i|f(z)]- On the
one hand, ||z[|y > A. Because Vf € X* such that || f| . <1, we have
F@)] < 1 fllx-llzllx < ll2]lx-

On the other hand, ||z|] < A and A is accessible. This follows from
Corollary 9.5, which also ensures that 3g € X*, ||g[| yx. < 1 with |g(x)

| =
sup|‘f‘|x*§1|f(x)|. =

Here is an exercise mentioned last time.
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Exercise 10.1. Let X be a linear normed space, Xy < X be a dense
subspace of X and fo € X§. Then 3!f € X* such that f\XO = fo.

To do this, apply Theorem 9.2 and notice that two bounded func-
tional coincide on a dense subset must coincide. Furthermore, the func-
tion f above satisfies | f||x. = [ foll x:-

Here is an example that shows: the extension from Theorem 9.2 can
be not unique.

Example 23. Consider the normed space (R?, | ||,), where

s (2yy) = 2] + [yl

is equivalent to || |, since dim(R?) =2 < oo . In fact, (R?, | ||,) is just
R, | ) DR, |I,)- Let p2: R? = R, (x,y) — y be the projection to
the second coordinate. Then

G :=p;'(0) = {(x,0) e R® : z € R}

is a closed subspace of R? that’s isometric to R. Consider a functional
on GG as follows:
f:G—= R, (x,0) — x.

It’s easy to see that ||f|,. = 1. We can directly construct lots of
extensions of f. To see this, define

fo: R* > R, (z,y) — z+ By

for all 5 € R. Then ||fﬁ||(]R2)* = 1V |B|. This can be checked by
taking (z,y) = (1,0) (z,y) = (0,1) and using the triangle inequality
|z + By| < |z| + |B]ly]. Thus, for all B € [-1,1], fz € (R?)* is an
extension of f with [|fg|gsy. = [fllg- = 1. Furthermore, [-1,1]
contains lots of elements, since

card[—1,1] = cardR = card("2) > card N. (22)

The inequality card(2) > card N is known as a special case of Cantor’s
Theorem.

Here is a proof of “R is uncountable” using (22).

Proof. It suffices to show that N2 is uncountable, where 2 means a set
of exactly 2 elements, {@,{@}} or {—1,1} for example. WLOG, let
2 = {—1,1} then an element of N2 is just a sequence with values being
1 or —1. Suppose N2 is countable, i.e. Y2 = {a(k): k € N} where ay, is
a sequence whose values lie in {—1,1}. Then consider the sequence

B:N—={-1,1},n— —a(n),.
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In other words, 5 is a sequence whose values lie in {—1,1} and satisfies
Vn € N: 3, # a(n),. Hence Yk € N: 3 # a(k). While 3 € N2, which
contradicts with N2 = {a(k): k € N}. O

It’s possible that Hahn-Banach Theorem gives a unique extension.
Here is a proposition about this.

Definition (Strictly Convex). Let X be a linear normed space. Then
X is said to be strictly convex, if for all distinct =,y € X with
[zl = llyll = 1, we have [|(z +y)/2|| < 1.

T Yy

Proposition 10.3. Let X be a linear normed space. If X* is strictly
convex, then the extension given by Hahn-Banach Theorem is unique.

Proof. Omitted. This is not our main goal. O

10.1.1 Something about Dual Space

In this part, p € [1,00] and ¢ = p’ = p/(p — 1) is the conjugate index
of p unless otherwise specified.
We have studied ¢, space and hence it’s natural to ask:

Question 10.1. What's £ 7
The following example answers a part of this question.
Example 24. We have ¢} = (.

Proof. I will construct a contraction ¢: ¢oc — ¢7 and its inverse that
is also a contraction. Then (., = /7.
Let ¢: by — €7, 0 — @, Where

pa: bl > Kz anoﬁ.
n>1

Holder’s inequality implies that ¢, is well-defined and bounded, with
[allg: < [l In other words, ¢q is a bounded linear functional on

i < llalls we get [lollse. ) < 1.

£y for each « € {o. From |,
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Then we define the inverse of ¢. Let

en:=(0,...,0,1,0,...) foralln e N
n—1 terms
and ¢: €7 — Lo, f + F, where o = f(e,),Vn € N. Then v is well-

defined. What should be checked is just: Vf € /7, }Q/JfHOO < 00, which
is right since

Vn e N: [@f] = [f(en) < |If

enlle, = 1 £1le;
1

4

implies that H1/1f||oo < Hf||q and hence ”1[}”8(61,400) < 1. Now we prove
that ¢: £ — £7 is an isometry, i.e. (9o =ide) A (Yo =ide,).

e For potp =idy: let f € (] be an arbitrary element. Then T is
a sequence in /o, such that Vn € N, o/ = f(e,),

pov(f) = ()

and hence for all x € ¢ :

[pov(f)](=)

[o(pf (@)
> wntn

n>1

= anm

n>1

= Z f(znen)

n>1

N
n=1

N—o00

N
= Jim S (o)
n=1

Here the limit is the usual limit for sequence in K and we will use
the continuity of f to pass the limit to the limit in ¢;, in other
words, we want to find the limit (with respect to convergence in
norm) limy 25:1 Tpen in £1. It’s natural to guess the answer:
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just x. Since

N
D apen —xl| =10,...,0, 211, 2n52, )y
n=1 1
= > ol
n>N+1

N
= llzll, = Y|zl
n=1

converges to 0 as N — oo, and by continuity of f, we get

N N
i 1($m) 1 g 3 ) = 10
Above all, [p o ¥(f)](z) = f(x) holds for all x € ¢;. Thus, po
Y(f) = f holds for all f € £] and hence ¢ o) = idy;.

o For Yoy =ids_: let a € £ be an arbitrary element. Then for
all a € Vo
Yop(a) =1(pa)
and Vn € N
[¥ o p(a)]n = [¥(Pa)ln = Palen) = an.

The last equality can be checked by definition of ¢, and e,.
Therefore, [t) o ¢](a) = « holds for all a € £, i.e. o =1idy_.

Above all, ¢ is an isometry from ¢, to ¢} and €, = ¢7. O

Remark 10.2. Verification of “¢ is a bijection” is a little complex,
since the value of ¢ o ¢ at a point f € ¢7 is a map from ¢; to K. Just
keep in mind the domain and codomain of each map, and check equality
at each point.

Example 25. There is a norm on K™ such that
(k") = K",
where K is equipped with || ||,.
Proof. Consider the orthonormal basis of K", i.e.
er:=(0,...,0,1,0,...),Vk € [n].

k—1 terms
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Then we set the basis of (K™)* to be the dual basis of {ex: k € [n]}.
In other words, we consider the base {¢;: j € [n]} defined by

Vi k€ [n]: @;ler) = 5%.

Then for all f € (K™)*, we can write
n
f=2_flej)e;
j=1

And we define the norm on (K™)*
1/2

1 6 R = (iseF)

It’s easy to verify that || || is a norm. Let
Fr (&) K] o (£(e))), e = (Fe0) - Flen).

which will be proved to be an isometry. Clearly F' is surjective and
ker F =0 , l.e. F is injective. What is left to prove is just

Ve ®") IFEly = IF1-

Let f € (K™)* be given. Then

IFWl = || (£ jepm
- (Xre?)

j=1

= 1171,

as we wanted. O

2

Finally, try to finish this exercise by imitating what we have done
in Example 24.

Exercise 10.2. Prove that (; = (, for p € (1,00).
8.1.1).

Remark 10.3. We have proved that £; = £, for all p € [1,00). How-
ever, it’s not very easy to study £Z.
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10.2 Lecture 10-2
Recall

We have learnt
o ¢ lo

in Example 4.

10.2.1 More Dual Spaces
Today, our first example is the dual space of cg.
Example 26. For K =R or C, we have

* AU
CO :gl.

Proof. To get an isometry, we need two contractions ¢: ¢1 — ¢ and

Y g — £ such that (p oy =ides) A (o =idy,).
e Construction of ¢: consider

vl = = @,

where Ya:co = Ko >0 zpa,. Forall a € ¢, the
functional ¢, is clearly well-defined (by Holder’s inequality) and

linear. Moreover, Holder’s inequality implies ||,

arbitrary a € ¢;. And linearity of ¢ is trivial. Thus
1. Above all, ¢ is a contraction.

e Construction of : consider
$:cy = by, f =7,

where ¢/ is the sequence (f(en))
still the sequence

neN’

VYneN:e,=(0,...,0,1,0,...).
——

n—1 terms

Now we check that ¢/ € ¢; and H@[qul <|If
let

A = Zsign (f(en))en.
j=1

< el for

*
Cy —

ellse ) <

Here {e, € cp: n € N} is

e For all n € N,

Then A™) € ¢ satisfies |[A™]|| =1 for all n € N. And

VTL S NZ f(An) == ZSign (f(en))f(en) = Z|f(€n)| (23)
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Then (23) implies
n — oo and we get

Iflle = D 1)l =Dk = [1¢7]),
j=1 j=1

Therefore, [[¢| g (cz.0) < 1, Le. ¥ is a contraction.

. > 3% | f((en)] holds for all n € N. Let

Now we check that both ¢, are the inverse of each another. For all
a € £y, we have o € ¢ and (¢ o p)(a) € ¢1. And Vn € N,

[W 0 @)(a)]n =gy = Yalen) = an,

which is easy to check. And hence (¢ o p)(a) = a. Since o € ¢ is
arbitrary, we get 1 o ¢ = idy, and one direction is done. For another
direction, let f € ¢ be an arbitrary functional. Then ¥/ € f1,(p o
¥)(f) € ¢§. For an arbitrary element z € ¢y, we have

[(po)(N)](@) = pys(x Z Tt

What is left to prove is just Yoo, z,0f = f(z). That’s true, since
continuity of f implies

00
PBEA
n=1

S (o)

n=1 .

= hj{’n; Znf(en)

)
N

= f(h]{/n;xnen).

= lip

|
-
&

And

N
g Tpln — T
n=1

as N — o0, since & € ¢¢ = limsup,,|z,| = lim,|z,| = 0. Thus

N
f(hj{fnnz:lxnen) = f(2),

=1/(0,0,...,2N41,TN+2,-- )|l — limsup|z,| =0
n

o0
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and hence @, (z) = Yoo bl = f(z). Since z is arbitrary, we get
(pot)(f) = fforall feci. And f is also arbitrary, so ¢ 0 ¢ = id.:.
Above all, both ¢, are isometries and ¢ = ¢;. O

Example 27. Set K = R in this example. Let
BV([a,b] := {f € ®[a,b]: f is of bounded variance},
BVola,b] := {f € BV[a,b]: f(a) =0},
BV, [a,b] = {f € BVj: f is right continuous}.

Then the dual space of Cla,b] is isometric to BV, [a, b]:
(Cla,b])" = BV, [a, ],

where the functional induced by p € Cla, b] is

b
o Cla,b] = C, f > / f(z) dp(x),

the Riemann-Lebesgue integral of f with respect to p.

Example 28. For all o-finite measure space (2, F, i) we have
vp € [1700): (LP(Qa‘F7 ,U’))* = Lq(Qw/—:v #)7

where ¢ = p'.

10.2.2 'Weak Convergence

Here comes important topics of Functional Analysis. Recall that for
a linear normed space X and (z,)neny € X,z € X. We say that
the sequence (z,)nen converges to z in norm, if lim, ||z, — x| = 0,

denoted by (z)nen M> x. This is the classical convergence mode

(hence we usually omit “in norm” and || ||”, writing “(z,)nen converges
to 27 and “(xn)nen — 2”) and we will encounter more convergence
modes now.

From now on, we don’t distinguish = and 2, i.e. we see two iso-
metric spaces to be same.

Definition (Weak Convergence). Let X be a linear normed space and
(Zn)neny € X,z € X. If for all f € X* we have lim,, f(z,) = f(2),
then we say (z,)nen converges to x weakly, written (z,)neny — @ Or

(zn)nEN i> T or (In)nEN — .

And here is a similar but different notion
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Definition (Weak* convergence). Let X be a linear normed space and
(fn)neny C X*, f € X*. If for all x € X we have lim,, f,(x) = f(z),
then we say (f,)nen converges in the weak star topology to f, written

(fo)nen — f or (fo)nen — f or (fu)nen - f (read as “weak star
convergence”).

Remark 10.4. Weak convergence is a property of sequence in X while
weak™ convergence is a property of sequence in X*.

Here are some examples.

Example 29. Consider the linear normed space £, where p € [1, 00).
The sequence (en)nen C ¢, converges weakly to 0 but doesn’t
converge to () in norm.

Proof. We prove as follows

e Weak convergence: let f € 7, then it suffices to prove
lim f(e,) = /(0) = 0.
While f has the representation
ty 39 = (f(en))neN

and hence lim,, f(e,) = 0 as we wanted.
e Convergence in norm: since [[e, ||, =1 for all n € N. O
It’s easy to prove that

Theorem 10.4. Let X be a linear normed space and (z,)neny € X,
then

(xn)nEN M> T = (xn)neN Aoz

Now we're going to the bi-dual space, for which we need some no-
tions relevant to natural embedding.

Definition (Induced Functional). Let X be a linear normed space.
For all z € X, we define a functional on X*, denoted by & with rules

B XS K f e f(x).

From this definition, we have

*

Claim. For all z € X, the functional Z is bounded, i.e. T € (X*) .
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Proof. For all f € X*, we have

[2(N] = [f(@)] < [1f ]l x-

which implies ||Z|| y.. < [lz]|. O

x|,

For convenience, we define

Definition (Bidual Space). For a linear normed space, the space (X *) -
is called the bidual space of X, usually denoted by X**.

The induced functional connects the space X and X** in the fol-
lowing meaning.

Definition (Natural Embedding). Let X := {2#: 2 € X}. The map-
ping ¢ defined as follows is called the natural embedding of X

X 5 X , T .
For z € X, % is also denoted by ¢,.

From definition, we see that ¢ is surjective. Moreover, we have
proved that ¢ is contractive. In fact, ¢ is an isometry. It suffices to
show that ||¢(z)|| > ||z|| for all z € X. By definition

leallx-e = sup [ea(f)l = sup |f(z)] = [,
fexr fexr

£l x <1 £l <1

the last inequality of which follows from a corollary of Hahn-Banach
Theorem, see Corollary 9.5. Thus, for all z € X we have ||tz || o = ||]].

Above all, we have X = X where the isometry is ¢.

Theorem 10.5. Let X be a linear normed space and (f,)nen C
X*, fe X* If (fo)neny — f in X* then (f)nen = f.

Proof. Suppose (fn)neny — f, ie. VF € X**: lim, F(f,) = F(f).
Then for any € X, ¢, € X** and hence lim,, t,(f.) = tz(f), i.e.
lim,, fp(z) = lim,, f(x). Then by arbitrariness of x, we have proved

(fn)nEN = f O

Remark 10.5. This theorem is another natural description of the in-
clusion X — X**

The reversed proposition of Theorem 10.5 is wrong, as the following
counter example.
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Example 30. Here we give an example, with a linear normed space
X and (fn)nen € X*, f € X* such that

((fn)neN - f) A ((fn)neN 7A f)

WLOG, set f = 0, else we can replace (fn)nen by (fr — f)nen. We
want something like the following graph

0 b
]
fo € X
%
0 X

It’s natural to consider the case that X # X** for which we have learnt
a example: X = ¢y with X* = ¢1, X** = /. Consider the sequence

(en)nGN g X* = 61;
where the m-th term of e,, is 6, for all m,n € N.

Verification. For convenience, we denote ¢, by a, i.e. a(z) = ¢, (x) =
> n>1 Gny for all . Then

o (en)neny = 0: for all a € X = ¢y, we have
0 .
lime,(a) = limz 0}a; =lima, =0
since a € ¢p. Thus (e,)neny = 0.
e (en)nen 2 0: consider the sequence 1 = (1)peny € X** = {0,
i.e. the sequence whose all elements are 1. Then
e .
lim1(e,) = limZéZl =liml=1+#0.
Thus (e, )nen 72 0. O
Weak convergence defines weak limit, which is unique.
Proposition 10.6. Let X be a linear normed space. Suppose
((xn)neN - x) A ((mn)neN - y)

where z,y € X, (xn)nen € X. Then x = y.
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Proof. For all f € X*, we have
hgnf(xn) = f(x)ahrl;n flzn) = f(y)

from the definition of weak convergence. Since (f(z)) nen 1S a sequence
in K, whose limit is unique, we have f(z) = f(y). While f is arbitrary,
if  # y, Hahn-Banach Theorem implies that there is some fy € X*
that distinguishes x and y, contradiction. Above all, z = y. O

Finally, here is a theorem that describes weak convergence.

Theorem 10.7. Let X be a linear normed space. Suppose (2, )nen C
X and z € X. Then (z,)ney — z if and only if the following 2
conditions hold:

1. sup,||z.| < oo;

2. 3G C X* with span G = X™* such that

Vg € G: (9(2n)), ey — 9().

Proof. Sufficiency: for all f € span G, we have f = E;’;l k;g;, where
gj € G, k;j € K(Vj € [m]). Thus

m

liyrln flzn) = lirrln Z kigi(zn) = Z k; hm gj(zy) Z kigi(z (x).
j=1

Therefore we can suppose G — X* with G = X*. By the density, for
all e > 0 and all f € X*, there is g € G such that ||g — f||y. <e. Let
M := sup,,||z,| and apply the triangle inequality:

|f(zn) = f(x)]
< |[f(zn) — g(zn)| + [g(zn) — g(z)| + |9(x) — f(2)]
1f = gllx-llzallx +lg(zn) = g(@)| + g = fllx- =l x
eM + |g(xn) — g(z)] + ellzl| x-

IN A

Since (g(asn))neN — g(z), there is N € N such that
Vn > N: |g(z,) — g(z)] < e.
Then Vn > N

[f(an) = f(@)| < (M + 2] x +1)e,
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which implies lim,, f(z,) = f(x) since € > 0 is arbitrary. Therefore,
(Zn)neny — x since f € X* is arbitrary.

Necessity: For the first condition, consider the natural embedding
v: 2 X — X**. Then for all f € X*, the sequence (f(zy)),  in K is
convergent and hence bounded. Thus

Vf e X" supl|f(wn)| = sup|zn(f)| < oo.
neN neN
Then, Theorem 7.6 implies that sup,, ||Z,|| y.. is finite, i.e. sup, ||z, || is
finite. For the second condition, consider G = X.
Here are some examples of application of Theorem 10.7.

Example 31. For p € (1,00), consider the space ¢,. Then Theo-
rem 10.7 means that: suppose (X(”))neN C ¢, and X € {,, then

(X ("))n ey — X if and only if the following 2 conditions hold.
1. suanX(”)Hp < 00;

2. VieN: lim, X" = X;.

Proof. Sufficiency: take G = {e,: n € N} and the second point is
done, if span G = ¢, and that’s true. To see this, let x € ¢, be given.
Then for all € > 0, there is some N € N such that

Z ‘xj|q <ef,

J>N

ie.
N
7\ M1
x—E xje; :<E |x]|) <e.
=1 >N
J . J

Then apply Theorem 10.7.

Necessity: it suffices to show the second condition, since the first
condition is guaranteed by Theorem 10.7. For all 7 € N, consider e; € ,
then we have

[oe]
Xi = ei(X) = lime; (X)) =1lim Y 65 X" = lim X" O
Remark 10.6. Here we restrict p ¢ {1,00}. Since
e For p =1, then ¢ = oo and span G is not dense in £;

e For p = oo, the dual space £, is almost unknown.

Page 111 of 198



10.2 Lecture 10-2 10 WEEK 10

Example 32. Let a o-finite measure space (2, F, ) and p € (1,00)
be given. Suppose (fn)nen C Ly, f € Ly, then (fy)nen — f if and only
if the following 2 conditions hold.

L sup,, || fall, < oo;

2. VE € F with u(FE) < oo, we have
i [ foxede= [ fred
n o Ja Q

Proof. Sufficiency: take G = {xg: (F € F) A (u(E) < 00)}, then
span G is the set of all integrable simple functions on {2, which is dense
in L,. Then apply Theorem 10.7.

Necessity: The first condition is guaranteed by Theorem 10.7. And
the second condition is also satisfied. Let E € Q such that u(F) < oo
be given, then xr € L, and hence

tim [ fxedn =timxe(f) = xe(h) = [ Feedn
where xg means the functional
QDXE:LP_>K7f’_>/QfXEdM' O

Remark 10.7. Here we restrict p ¢ {1, 00} for the same reason as the
previous example. And we used the fact that L; = L,, which needs
the assumption that (2, F, u) is o-finite.
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11.1 Lecture 11-1

Something about biduality: let X be a linear normed space, then the
space X** is complete and the natural embedding ¢: is a injection
keeping norms. Thus, the pair (X** :) is a completion of X, which
ensures the existence of completion.

11.1.1 More about Weak Convergence and Weak-star Con-
vergence

Let X be a linear normed space and (2, )neny € X,z € X. There are 3

modes of convergence on X:

(Tn)neny — ¢ < limy ||z, — 2| =0,

(Tn)neny = ¢ <= Vf e X*: lim, f(z,) = f(z),

(Tn)neny = ¢ <= Vy € X,: lim, 2, (y) = lim,, 2(y),
where X, is a linear normed space such that (X,)* = X, called the
pre-dual space of X if exists (so we don’t talk the weak-* convergence
on X is not the dual space of any linear normed space).The definition

of (p)neny = z is just viewing X as the dual space of X, as we learnt
late week.

Example 33. Consider ¢ = 41,7 = {~. Then ¢y is the pre-dual space

of ¢1 and we can discuss the 3 modes of convergence on f1: —, —, =,

Weak convergence and weak-star convergence generalize the notion
of convergence, and in fact, they generalize the notion of boundedness.

Definition (Boundedness). Let X be a linear normed space and A C
X, then A is said to be bounded if
M >0:Vz € A, |jz| < M.

Definition (Weak Boundedness). Let X be a linear normed space and
A C X, then A is said to be weakly bounded, if

Vf e X*3IMy > 0 such that Vz € A,|f(z)] < My.

Definition (Weak %- Boundedness). Let X be a linear normed space
and A C X, then A is said to be weak-star bounded, if

Vy € X,3M, > 0 such that Vz € A, |z(y)| < M,.
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Here is a simple exercise about them.

Exercise 11.1. For a linear normed space X and A C X, show that
A is bounded if and only if A is weak-bounded.

Our classmate, Chen Li gave a convergence mode:

Definition. Let X be a linear normed space and (z,)neny C X,z €
X. If for all f € X*, (fn)nen C X* such that (fn)nen = f, we
have lim,, f,(z,) = f(z), then (x,),en converges to x, denoted by

l
(xn)nGN — Z.

Claim. This convergence mode is not equivalent to weak convergence.

Proof. Suppose (2)nen L 2. Let an arbitrary functional f € X*
be fixed. Define a sequence (fn)neny € X*: Vn € N, f,, = f. Then
(fa)nen = f and hence

flz) = h;nfn(xn) = hin f(zn).

Since f is arbitrary, we have (z,)neny — 2.

Let X = H be a Hilbert space with a countable orthonormal basis
(zn)nen. Corollary 12.9 implies that (2, )nen — 0. Consider the Riesz
map ¢, then (¢ ),en = 0 as you should verify. But lim,, o2 () =
1+#0. O

Weak topology is a topological notion:

Definition (Weak Topology). Let X be a topological space and F be
a family of functions f: X — cod(f), where cod(f) is a topological
space for each f € F. The weak topology of X with respect to F is
the smallest topology such that for all f € F is continuous.

Example 34. For a family of topological space {X;: i € I'}, the prod-
uct topology on X := [],.; X; is the weak topology of X with respect
to the family of projection {m;: X — X, | ¢ € I'}.

For a linear normed space, we usually mean the weak topology with
respect to X* to be the weak topology of X. Similarly we define the
weak#-topology on X* to be the weak topology of X* with respect to
X. In other words, the weak#-topology on X* is the smallest topology
such that for all z € X, the functional Z is continuous on X*.

Now, we can define closure for A C X with respect to each topology,
which is important to check whether a set is closed or not. To be
clear, let -l Il _«* denote the closure operator of norm topology, weak
topology and weakx topology (if pre-dual space exists) respectively.
There is a natural question:
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Question 11.1. Let a linear normed space X and a subset X, be

W W

given. What’s the order relation for this 3 closure: YOH H,XO ,Xo 7
Answer and Proof. When X = (X,)* exists, the relation is
P LR rafeb cu

It suffices to see that TH | € T € Tos, where the T means the topology
induced by its subscript. We know 7 | 2 7., since Vf € X*, we know

f is continuous when X is equipped with 7 . Moreover, we know
Too 2 Tow since X, C (X,)* = X*, as we wanted.
When X = (X,)* doesn’t exist, we have just )TOH I - Yow. O

11.1.2 Conjugate Operators

For 2 linear normed spaces X,Y and a map T: L(X,Y), we have al-
ready seen the dual spaces of X, Y. We want a linear operator T* such
that Vo € XVf € Y*, we have (T*f)(z) = f(T(x)). Also we denote
f(z) = (f,z) for z € X,f € Y* as the notation of inner product.
Thus, we want T such that

reX —L . vsT:

(f;Tw) = (T"f,x).

T'feX* «—— Y 3

Such T* exists if T' € B(X,Y).

Theorem 11.1. Let 2 linear normed spaces X,Y and a map T €
B(X,Y) be given, then:

1. such T™ exists and is unique;
2. we have ||T|| = || T*|-

Proof. Existence and Uniqueness: we define T as the following com-
mutative diagram

X T,y
Tk‘lf
K

ie. T*:Y*" - X*, fr— foT. For all f € Y* we have foT € X* since
IfoT|l < |Ifll - lIT|]. This definition satisfies:

Vee X,VfeY*: (f,Tx)=(T"f,x),
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which can be easily verified. Existence is ensured. Furthermore, if
another map F': Y* — X* satisfies:

Vee X,VfeY*: (f,Tx)=(Ff,x),

then we have F' = T*. To see this, let an arbitrary f € Y* be given
and we prove that T*f = F f. For all z € X:

(Ff,x)=(f,Tx) = (T"f,z),

thus Ff =T*f. Above all, F' = T* and hence T™* is unique.
Norms coincide: one direction was done since ||f o T|| < |[f| - [|T]|-
For another direction: apply Corollary 10.2

1Tl = sup [I 7],
AR
= sup sup |f(Tz)]

zeX fey*
lzli<tjf<1

= sup sup [(T7f)(=)|
zeX fey*

=<1 ir<1
< supsup [T L[] - =]
€X fey”
HrH<1\|f|\<1
<,
as we wanted. Above all, ||T*|| = ||T. O

Remark 11.1. You should check that: for all linear normed spaces

X,Y,Z and bounded linear operators X Ly s Z, we have go f is a
bounded linear map with ||go f|| < |lg - || f]l-

Here is an example from Linear Algebra.

Example 35. Let a linear map 7T: K™ — K™ be given, then it must
be bounded. Thus there is T*: (K™)* — (K")*. Though we have
proved that (K™)* =2 K", we won’t apply the result here. Consider the
standard basis of K": {e;: j € [n]}, where

Vien]:e =(0,...,0,1,...).
~——

j—1 terms

Similarly, consider the basis of K™: {u: k € [m]}. Then the operator
T is corresponded to a matrix My, since

Vi€ n]: Te; = Zajkpk,
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whose corresponding matrix is My = (aj,k)ig[:g}- And now we consider

the basis of (K™)* and (K™)* to get the matrix of T*. There is a related
exercise, see Exercise 9.4. Let

Yy, :=span{e;: j € [n]\ {k}},Vk € [n]

then Exercise 9.4 implies Jej, € (K™)* such that e} (ex) = d(ex, Yi) > 0
and ey |y, = 0. In fact, d(ey, Yi) = 1. Thus ej(e;) = 5;?.

Definition (Dual Basis). For linear normed space K", the basis of
(K™)* defined as above, i.e. {ef € (K")*: k € [n]} is called the dual
basis of {e, € K": k € [n]}.

Now we are going to find Mp«. Suppose My« = (bj7k)£§[7:]]. From
U @]
{wj:j € ml} {er: ke [nl}

we get T*uf = Y7, bjuef for all j € [m]. From the definition of T*:
we have

(T*pj er) = (uj, Ter),
and apply T*p% = Y0, bjrer, Ter = YL, ap ki to get
bji = ai
for all [ € [n],j € [m]. In other words, Mp- = *My.

Example 35 means: transpose matrices are the special case of dual
operators. Recall that, for all matrix M, we have M = M and hence

VI e B(X,Y): T =T,
in some sense for 2 arbitrary linear normed spaces X,Y. Above all

Corollary 11.2. For arbitrary linear normed spaces X,Y,Z and T €
B(X,Y),SeB(Y,2Z):

1. T* outx =1y oT, where tx, ty is the natural embedding of X, Y
respectively;

2. (idx)* = idx-;

3. (ToS)*=8*oT*
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Proof. What we want is: the following diagram commutes
X LX Xk

e

Y —— Y

Ly

Remember that Y** = (Y*)". For all z € X, f € Y*, we have

[ty o TY(@)] (f) = [1v (T2)] (f)
= [Tz](f)
— f(Tx)
= (foT)(w),

and

Therefore,
[y o T)@)] () = [(T* 0 1) ()] ()
holds for all f e Y*,z € X, i.e.
[(by o T)(x)] = (T** o LX)(x)
holds for all x € X. Hence
tyoT =T ourx.

The rest is easy. O

11.2 Lecture 11-2
Recall

We studied conjugate operators last time: for f € Y*and T € B(X,Y),
the functional T* f is defined by

(T*f,z) = (f,Tz) Vo € X.
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11.2.1 Compact Operators and Finite-rank Operators
This lecture was given by our classmate Kangwen Zhang.

Definition (Compact Operator). Let X,Y be 2 linear normed spaces
and T € L(X,Y). If for all A C X that is bounded, we have T(A) is
relatively compact in Y, then T is said to be a compact operator.
The set of all compact operators from X to Y is denoted by C(X,Y).
In the case that Y = X, the set C(X,Y") is written C(X).

Remark 11.2. The following statements are equivalent:
1. T is compact;
2. T(Bx) is relatively compact, where Bx := {z € X: [|z|| < 1};

3. For all bounded sequence (z,)n,eny € X, there is a subsequence
(Tn, )ken such that (T'z,, )ren converges in Y.

Remark 11.3. The C of C(X,Y) means “compactness”, not “continu-
ity”.

Definition (Finite-Rank Operator). Let 2 linear normed spaces X,Y
be given. If T € B(X,Y) satisfies dim(ImT") < oo, then T is called an
operator of finite rank. The set of all finite-rank operators from X to
Y is denoted by F,.(X,Y). In the case that ¥ = X, the set F.(X,Y)
is written F,.(X).

Remark 11.4. There are some books that don’t require finite-rank
operators to be bounded. We require this, since we don’t care much
about operators that are not continuous.

We don’t need a compact operator to be continuous in the definition,
because

Proposition 11.3. For 2 linear normed spaces X, Y, we have
C(X,Y) C B(X,Y).

Proof. suppose T' € C(X,Y), then T(Bx) is relatively compact, i.e.
T(Bx) is compact and hence bounded. Therefore, T'(Bx) is bounded
and so is T'. O

In fact, we have

Proposition 11.4. For 2 linear normed spaces X, Y, we have

C(X,Y) = B(X,Y).
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Proof. For addition: let S,T € C(X,Y) be 2 arbitrary compact opera-
tors. Let (z,)neny € X be an arbitrary bounded sequence. Then there
is a subsequence (still denoted by (zp)nen) such that (Tay,)nen con-
verges in Y. Furthermore, since S is compact: there is a subsequence
(Zn, )ken such that (Sz,, )ken converges in Y. Therefore, (z,,)ken
is a subsequence of the original (zy,)nen such that ((T'+ S)wz,, )
converges. Above all, T+ S is compact.

For multiplication with scalars: let T € C(X,Y) and A € K. Let
(n)neny € X be an arbitrary bounded sequence. Then there is a sub-
sequence such that (Tz,, )ren converges in Y and then ()\T(znk))keN
also converges. Therefore, AT € C(X,Y). O

keN

Remark 11.5. Proof of addition part is similar to the proof this propo-
sition: a bounded sequence (., Yn)nen C R? has a convergent subse-
quence. Let (mnk)keN C (Zn)nen be a convergent subsequence, then
(ynk) pen 1S a bounded sequence in R. Take a convergent subsequence

of (y”k)keN and we’re done.
Similar to Exercise 8.1, we have

Proposition 11.5. Let a linear normed space X and a Banach space
Y be given. The space C(X,Y) is a closed subspace of B(X,Y).

Remark 11.6. This implies that C(X,Y") is a Banach space whenever
Y is a Banach space, since B(X,Y) is a Banach space.

Proof. Let (T),)nen C C(X,Y) be a convergent sequence of compact
operators with limit 7' € B(X,Y). We want 7' € C(X,Y). Since Y is a
Banach space, T(Bx) C Y is relatively compact if and only if T'(Bx) is
totally bounded (see Corollary 6.4). Let £ > 0 be an arbitrary number.
Suppose N € N satisfies: ¥n > N, ||T,, — T|| < €. Fix some n > N and
we have T, (Byx) is relatively compact and hence totally bounded in Y,
ie. H{z; € Bx | j € [m]} such that

T,(Bx) € |J B(Tuzj,e).
jelm]
Now we have a claim: {T'z; | j € [m]} is a 4e-net of T(Bx ). To see this,
let an arbitrary element # € Bx be given, then there is some j € [m)]
such that ||T,x; — T,z|| < e. Thus
T2, - Ta|) < |Ta; - Toa, | + [Ty — Toal| + || Tz — Ta

< |IT = Tulllz;ll + & + T = T

<et+e+e

< 4e.
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where we used triangle inequality, definition of operator norm, defini-
tion of unit ball and so on. Therefore, {Txz; € T(Bx) | j € [m]} is a
4e-ball of T(Bx) and hence T'(Bx) is totally bounded. O

Now we prove that: an operator of finite rank must be compact.

Proposition 11.6. Let 2 linear normed spaces X,Y be given. We
have
Fr(X,Y) CC(X,Y).

Proof. Since dim(Im7T') < oo, we know that Im 7T is complete. Then
for all bounded set A C X, the set T(A) C Im 7T is bounded and hence
T(A) is bounded. While dim(Im7T") < oo, we know T'(A) is compact
from Theorem 6.8. Thus T'(FE) is relatively compact and hence T is
compact. O

In fact, the set of all operators of finite rank is a subspace of the
space C(X,Y).

Proposition 11.7. Let 2 linear normed spaces X,Y be given. Then
F(X,)Y) = C(X,Y).
Proof. Clearly 0 € F,.(X,Y). We prove addition only. O

It’s natural to consider the cast that the codomain of an operator
is a finite dimensional space:

Proposition 11.8. Let 2 finite-dimensional linear normed spaces X,Y
be given. Then we have

LX,)Y)=F.(X,Y)=C(X,Y).
Remark 11.7. The space X is also needed to be finite-dimensional.
To see this, set Y = K and find some space X that X# # X*.

Proof. It suffices to prove that VI € L(X,Y), we have T € F.(X,Y).
Since dim(Im7) < dim(Y) < oo, what needs to be proved is just
T € B(X,Y). It’s clear that L(K™,K") = B(K™,K") and L(X,Y) =
B(X,Y) follows from the following commutative diagram

x L. vy

WT Tw
K™ ——— K"
3Ly

where ¢,1) are isomorphisms. In other words, T' = ! o Ly o ¢ is
composition of bounded linear maps. O
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The following proposition tells some structure about the 3 spaces
C(X,Y),F-(X,Y) and B(X,Y).

Proposition 11.9. Let 3 linear normed spaces X,Y, Z and bounded
linear operators T: X — Y, S:Y — Z be given. Then SoT is compact
whenever one of S, T is compact.

Proof. We consider the following 2 cases respectively.

Case 1: S is compact. Since T(By) is a bounded subset of Y and S
is compact, we know that S (T(BX)) is relatively compact, i.e.
S o T'(Bx) is relatively compact. Thus T o S is compact.

Case 2: T is compact. For all bounded sequence (x,)nen C X, the
sequence (T'z,)nenis bounded in Y, then

(S(Txnk))keN = ((S © T)z"k)keN

converges in Z for some subsequence (z,, )ken. Thus S o T is
compact. O

Corollary 11.10. Therefore, C(X) is a two-sided ideal of the ring
B(X).

Here is an example of compact operator.

Example 36. Consider the infinite dimensional matrix T' = (a; ;)i jen
with elements such that ), j>1|ai,j|2 < 00. The operator

o0
T:ly = by, a3 T ::( n)
2 2,T X ;GJ.IJ neN

is compact.

Proof. We prove that T is a limit of a sequence of compact operators
sequence, and 7' is bounded then Proposition 11.5 can be applied.
First, T is bounded: from Holder’s inequality, we get

0o 00 ) 1/2
vn € N: [Tan| = 3 angs| < lally (Ylangl?)
j=1 j=1

and hence

2 2 2
1723 < ol (30D laisl?).

i=1 j=1
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Above all

2)1/2. (24)

170 < (33 Jas

i=1j=1
Secondly, let (T},)nen be defined as follows

n n
VnGN,Tn: Lo %eg,l'l—) (Zal,jxj,...,Zamjxj,(),...).
Jj=1 Jj=1

Then dim(ImT,,) < n and T, is bounded (since || T, | < ||T]|). Hence
(Tn)neN c ]:T(EQ) — C(KQ)'

Let suitable elements in (24) be 0 and we get

-2 (Y Y las)”

i=n+1j=n+1
) 0\ 1/2
= ( D laiil* = > laiyl )
ij>1 1<i,j<n

— 0(n — 00).
Thus T = lim,, T,, and hence T € C({3). O

For compact operators, relation between convergence modes is dif-
ferent.

Proposition 11.11. Suppose X,Y are 2 linear normed spaces and
T € C(X,Y). Then for all X D (zp)neny — , we have (Txp )ney — T,

Remark 11.8. In general: for T € B(X,Y"), we have (Txy,)neny — Tz

Proof of Remark 11.8. For an arbitrary f € Y*, we have T*f =
foT € X*. By definition of weak convergence:

Hm T f(x,) = im T* f(z),

i.e.

lim f(Tx,) = f(Tzx).
Since f € Y* is arbitrary, we proved (Txy,)nen — T'z. O

Examples 37 shows that there is an operator T and a sequence
(Zn)nen such that (x,)neny — = and (T )neny 7 T, where T is a
bounded operator. Thus, compact operators are special.
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Example 37. Counsider X = ¢y and (e,)nen C co, where e, is the
sequence whose all elements are 0 expect for the n-th element being 1.
Then consider id.,: ¢co — ¢o, we have (e,)neny — 0 but (e,)nen # 0.
See Example 29.

Proof of Proposition 11.11. Suppose (Tx,)nen 7 Tz, then there
is some g9 > 0 and a subsequence (yx)ren = (Zn,)ren such that
Ty, — Tx|| > €0 for all & € N. Weak convergence ensures that
(zn)nen is weakly bounded and hence bounded, see Exercise 11.1.
Therefore, (yi)ren is bounded and has a subsequence (2 )men such
that (T'zp,)men converges toy € Y.

Claim. We have y = Tz.

The claim follows from Corollary 9.6 and Remark 11.8. Therefore,
there is some N (depending on £¢) such that for all m > N, we have
ITzm — y|| < €0, contradiction with | Ty, — Tx|| > g forallk € N. O

There is a important theorem about compact operators and conju-
gate operators.

Theorem 11.12 (Schauder). Let X,Y be 2 given linear normed spaces
and T € C(X,Y). Then T* € C(Y*, X*).

Remark 11.9. Furthermore, if both of X, Y are complete, then T* €
C(Y*,X*) implies T' € C(X,Y) (whose proof can be found in https:
//arxiv.org/pdf/1010. 1298v4.pdf).

Proof. Let X,Y be 2 given linear normed spaces and T € C(X,Y).
Now we prove T* € C(Y*, X*). We want to prove that T*(By-) C X*
is relatively compact, i.e. it is totally bounded (since X* is complete).
Since T' is compact, we have T'(Bx) is relatively compact and hence
totally bounded, see Corollary 6.4. Given arbitrary € > 0, there is some
n € Nand {z; € X: j € [n]} such that

T(Bx) = U By (yj,€),
j=1

where y; := Tx; for all j € [n]. Define
S:Y* — K",
f — (f(y1)7f(y2)7 s 7f(yn))

Now S is bounded (suppose K" is equipped with 1-norm) and compact
(since it is of finite-rank), then S(By ) is relatively compact, i.e. totally
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bounded. Let N := {f.: k € [m]} C By~ be a finite set such that S(N)
is an e-net. For all f € By«:

3k € [m]: IS(f) = S(fi)ll <e. (25)
And for all x € Bx:
3j € n]: Tz — ] < <. (26)
Now for all z € Bx and f € By, from (25) and(26), we have
(T f =T fi) ()]
= |f(Tz) = fx(Tz)|
< Nf(Tx) = f(Tay)| + | f(Taj) = fu(Tay)| + [fu(Ta;) — fr(T)
IAINT 2 = Tyl + 1S(f) = S + I fwllll T2 — Ty |
l-e+e+1-¢

= 3¢,

<
<

where the red part is just (25) and(26). Since = € Bx is arbitrary, we
have
|T*f = T* frll = sup [(T*f —T* fr)(2)] < 3e < 4e.

llzll=1

Therefore, the set T*(By~) has a finite 4e-net for all ¢ > 0, as we
wanted. O

Here is a result for finite-rank operators, similar to Proposition 11.9.

Proposition 11.13. Let 3 linear normed spaces X, Y, Z and bounded
linear operators T: X — Y, S:Y — Z be given. Then S o T is finite-
rank whenever one of S, T is of finite rank.

Proof. It’s easy. O
Corollary 11.14. F,.(X) is a two-sided ideal of the ring B(X).
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12 Week 12

12.1 Lecture 12-1

This lecture was given by Lingxuan Wu.

12.1.1 Inner Product and Inner Product Space

Definition (Semi-inner Product). Let X be a vector space over the
field K. A map u: X x X — K is said to be a semi-inner product,
if Vo,y,2 € X and Va, § € K, the following properties are satisfied:

1. linearity: u(azx + By) = au(z,y) + fu(z, 2);
2. semi-positive definite: u(x,x) > 0;
3. conjugate-symmetry: u(z,y) = u(y, x).

Definition (Inner Product). An inner product is a semi-inner product
that is positive definite. In other words: w is an inner product if u is a
semi-inner product and u(z,z) =0 = z = 0.

Remark 12.1. Let u be a semi-inner product on X.

1. The operator u is conjugate-linear (or anti-linear) for the second
entry. This follows from linearity and conjugate-symmetry.

2. If one of z,y = 0, then u(z,y) = 0.

Definition. A vector space with an inner product is called an inner
product space.

Notation. Suppose there is an inner product u: X x X — K, then
u(x,y) is also denoted by (z,v), (x,y), (z | y) or (z|y). The last
2 symbols are usually used in Quantum Mechanics, also known as
Dirac notation. And I would like to use (z, y).

Here are some examples of inner product spaces.

Example 38. The space of square-summable sequence /5 is an inner
product space, whose inner product is

(,)ilaxly > K (2,9) = Y Tt (27)

n>1

Holder’s inequality implies that (27) is well-defined.
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Example 39. Let (Q2,%, 1) be a measure space. Then the space of
square-integrable functions Lo (€, %, 1) (denoted by Lo for short) is an
inner product space, whose inner product is

(,): Lo xL2—>K7(x,y)H/f§du-
Q
Holder’s inequality implies that (, ) is well-defined. Example 38 is a
special case of this example.

Remark 12.2. This is a classical Hilbert space in Quantum Mechanics,
whose elements are wave functions.

Theorem 12.1 (Cauchy-Schwarz Inequality). Let X be an inner prod-
uct space. For all z,y € X, we have

(@, 9)[* < (2, 2) (y, ) -
Proof. Let a € K be an arbitrary element. Then the O

Remark 12.3. The Cauchy-Schwartz inequality comes to be a equality
if and only if z,y are linearly dependent.

Proof.
O

Cauchy-Schwarz inequality implies that an inner product space is a
normed space:

Corollary 12.2. An inner product { , ) on a vectors space X induces
a norm on X as follows:

I:X =R,z /().

Proof. Just verify the axioms:
[ ]
° O

Corollary 12.3. The inner product of an inner product space is a
continuous function on (X x X, || ||;). Here the space X x X is equipped
with only product topology.

Proof. Since X is first countable, we know X x X is first countable.
Then we prove that (, ) keeps limit of sequences. Let z,y € X be
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given and (z,,)neN — T, (Yn)nen — y. Then Cauchy-Schwarz inequality
implies
|<x’myn> - <.73,y>| < ‘<xnayn> - <x’my>| + |<xn7y> - <$,y>|
= ‘<xnayn - y>‘ + |<.’17n - x’y>|
znllllyn = yll + llzn — z|lllyl

sup|lz;[llyn — yll + llzn — 2|yl
JeN

INIA

— 0(n — o).
Since (2, )nen converges in X implies that (2, )nen is bounded in X. O

Inner product spaces have some interesting properties:

Theorem 12.4 (Polar Identity). Let X be an inner product space over
K and z,y € X are arbitrary elements.

e f K=R:

o fK=C:
3

(x,y) = Z%<x+iky,x+iky>.
k=0

ke

Remark 12.4. Polar identity is important, since it rewrites the inner
product of 2 elements as sum of inner product of same elements.

Exercise 12.1. Prove Theorem 12.4.

Theorem 12.5 (Parallelogram Law). Let X be an inner product space
over K. For all z,y € X, we have

2 2 2 2
[z +ylI” + [l = ylI” = 2(l=[]” + [ly[I)- (28)

Proof. Write the norm in the form of inner product and apply linearity.
O

Remark 12.5. This theorem has geometric meaning as follows:

In fact, a norm of a linear normed space is induced by an inner
product if and only if it satisfies (28).

Theorem 12.6. Let X be a linear normed space over K whose norm
satisfies (28), then there is an inner product (, ) on X such that || ||
is induced by ( , ).

Proof.
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12.1.2 Hilbert Space

Definition (Hilbert Space). An inner product space H is said to be
a Hilbert space, if H is complete with respect to the norm induced by
the inner product.

12.2 Lecture 12-2
12.2.1 Orthogonality

In this lecture, we assume that H is a Hilbert space and H is an inner
product space.

Definition. Let x,y € H. We say z is orthogonal to y, denoted by
x Ly, if (z,y) =0.

Definition. Let A, B C H. We say A is orthogonal to B, denoted
by A L B, if (z,y) = 0 holds for all x € A,y € B. For the case that
A = {z} is a singleton, we write L B instead of A L B.

Remark 12.6. We have A 1 & for all A C H as a “vacuous truth”.

Definition. A subset £ C H is said to be an orthogonal set, if for all
x €&, we have x L £\ {z}. A subset £ is said to be an orthonormal
set, if it’s an orthogonal set and for all z € &, we have ||z| = 1, i.e.
(x,z) = 1.

Example 40. Consider H = K2?. The set {e; = (1,0),ea = (0,1)} is
an orthonormal set.

Example 41. Consider H = {3 over the field K. The set {e,: n € N}

is an orthonormal set.

As a generalization of the classical Pythagoras Theorem on R?, we
have

Theorem 12.7 (Pythagoras). Let £ C H be an orthogonal set. Then
for all z; € £ and k; € K, where j € [n], we have
2

S kil = [kl (29)
j=1 j=1

Proof. Prove by mathematical induction. For n = 1, it’s trivial. For
n = 2, we have . Then suppose (29) holds for n, now we prove (29) is
true for n + 1:

2 2
n+1 n
E kj(Ej = E kj{L'j + kn+1$n+1 5
j=1 J=1
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and z,4; is orthogonal to 27:1 kjx;, thus by the case n = 2 and
assumption about the case for n:

2 2
n+1 n n+1

S k|| = kgl A lknaznal® =D k). O
j=1 j=1

Jj=1

Theorem 12.8 (Bessel’s Inequality). Let {e,: n € N} be an orthonor-
mal set. Then for all h € H:

> I(hsea)* < 1Al

n>1

Proof. For all n € N, consider the element

hp i =h— Z(h,ej>e]

j=1
Then for all k € [n]: hy, L e, since

n

(hnsex) = (hyex) =Y (h,e;) (ej,ex) = 0.

j=1
Apply Theorem 29 and we get that:

2

R = {[hn + > (hoes) sl = llhnll* + Y [(hye)[? Z [(hy e,
Jj=1 j=1 j=1

holds for all n € N. Pass n — oo and we’re done. O

We can generalize this theorem to the case where {e,: n € N}
is replaced by an orthonormal set {e,: @ € I} that doesn’t need to
be countable. For this case, the sum ) ., should be replaced by
> _acy but it’s still meaningful /convergent (and in fact, the sum is still
countable sum, see the following Corollary), whose limit can be defined
by net, filter or integration with respect to counting measure.

Corollary 12.9. Let {e,: a € I} be an orthonormal set in H. Then
for all h € H, we have

> l{hsea) < (|

acl

and card £ < card N, where £ := {a € I: (h,e,) # 0}.
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Proof. Consider &, := {a € I: [(h,eq)| > 1/n}. Then €& =J,~, E
It suffices to prove that for all n € N, the set &, is at most countable. In
fact, £, is a finite set for all n € N. To see this, let an arbitrary n € N
be given. Then apply the same argument in the proof of Theorem 29:
for all aq,...,0p € &y

p
p 2
3 Z (hsea,) <)%,

thus p < n2||h||>. Therefore, we can pick at most {n2||h||2J elements
in &,. Thus &, is finite. ]
Theorem 12.10 (Gram-Schmidt). Let {h,: n € N} be a linearly in-

dependent subset of H. Then there is an orthonormal set {e,: n € N}
such that for all n € N:

span{h;: j € [n]} = span{e;: j € [n]}.

Proof. Prove by mathematical induction.

For n =1, the linear independence implies that hy # 0, thus define
e1 := hy/||h1]] and we’re done. Suppose the proposition is true for n,
i.e. there is already an orthonormal set {e;: j € [n]} such that

span{h;: j € [n]} = span{e;: j € [n]}.

Then we define a vector

n

—_—
entl = Npg1 — E (hnt1,€5) e;,

j=1

which is orthogonal to {e;: j € [n]}. Moreover, we will prove €,11 # 0
and hence we can define e, ;1 := ﬁ/“@“ If ,51 = 0, then

n

hn+l = Z <hn+17 €j> €5,
j=1
which implies h,4+1 € span{e;: j € [n]}, i.e. hpy1 € span{h;: j €
[n]} by assumption. Contradiction with {h,: n € N} being a linearly
independent. Thus we can define e, 1 := 673/”@” and {e;: j €
[n 4 1]} is an orthonormal set in H.
Finally, we prove that

span{h;: j € [n+ 1]} =span{e;: j € [n+1]}. (30)
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Since

Vk € [n]: e, € span{h;: j € [n]} Cspan{h;: j € [n+ 1]},

and hence
h =" Ahnyi,e)e;
en1 = — ij-i 1 €5) € € span{h;: j € [n+1]}.
[[En+ll

Therefore, we proved D part of (30). The C part follows from

n

bt = [Tl + 32 (s e
Jj=1

and the assumption. O

Theorem 12.11. Let {e,: n € N} be an orthonormal set in H and
h € H be an arbitrary fixed element. Then the following statements
are equivalent.

1. the space span{e,: n € N} contains h;

2. we have the representation (called the Fourier expansion of h):
h’ = anl <h76n> €n;

3. Parseval’s Identity holds: [|h]|* = > sl en)]?

Proof. We prove in the following order:

1 3 2 1.

1 = 3: from Theorem 12.8, we have

> lhen)l” < |Ih)”.

n>1

Suppose the other inequality is not true, i.e. Ja > 0 such that

1R1? =3 [(h,ea)* = a® > 0.

n>1

Since h € span{e,,: n € N}, for the fixed a > 0, there is some numbers
{a;: j € [N]} such that

N
h — Zajej < a.
j=1
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Then apply the first 2 equivalent conditions of Theorem 13.11 (notice
that Z;\le (h,e;) e; is the projection on span{e;: j € [N]}) and we get

2

N
a® > ||h— Zajej
j=1
N 2
> ||h— (h,ej)e
j=1

Clearly, h is orthogonal to Zj\;l (h,e;)e; and we can apply Theo-
rem 29:

Mz

N
(hoej)e| = ||h||2—_z:|<h,6j>|2

1

J

Thus we have

N 00
2 2 2 2
> |h)* =Y [(hyep)* = (R]* =Y [(hen)|” = d?,
J=1 n=1

which means a? > a2, contradiction. Therefore, it is impossible that

2 9
1P > 221 (R en) ]

3 = 2: for all n € N, apply Theorem 29 to h — ", (h,¢;)¢;
and h, we have

h— Z (hoeg)es|| = IRI7 =D _I(hye;) = 0(n — o).

j=1
Therefore,
- S e
2 = 1: the sequence (hy)nen, Where hy, := 377 (h,e;)e; con-
verges to h and (hy)neny C span{e,: n € N}. O
Further Topics: Von Neumann Algebra

Let M — B(H) be a closed subspace. We can analysis the subspace as
we studied the subspace Lo, < Lo, where Lg is the space of all measur-
able functions. They have clear different properties: commutativity.
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13 Week 13

13.1 Lecture 13-1

This lecture was given by Ruirui Chen.
We assume that H is an inner product space and H is a Hilbert
space (over K) in this lecture.
Recall
We have studied

1. Two elements z,y € H is said to be orthogonal, if and only if
(z,y) = 0. In other words, z L y <= (x,y) =0.

2. An element and a set M C H is said to be orthogonal, if and
only if VM € M (z,y) = 0. In other words, z 1L y <— (VYy €
M (z,y) = 0).

And we define

Definition. The orthogonal component of M C H is Mt = {z €
H:x 1 M}.

The following proposition follows from definition.
Proposition 13.1. We have

1. If M = H, then M+ = {0};

2. Foral M C H: MnM*t =g,

3. The orthogonal component of M C H is naturally a closed sub-
space of H.

Proof.

1. If M = H, take an arbitrary element y € M=, then for all x € H,
there is a sequence M 2 (x,)neny — @ by the density. Since (, )
is continuous:

(y,z) = nh_)n;o (Y, Tpn) = 1i£nO =0.
Thus,y Lz forallz € H,ie. y L H. Thusy Ly = y=0.
2. Forall M C H: lethMﬂMJ-,then
rlax ,

ie. (z,2) =0 = z=0.
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3. We have

M* = ﬂ {e e H: (z,y) =0}.
yeM

It suffices to show that Vy € M, the set

¥y} ={zeH: (z,y)=0}
is a closed subspace of H. That’s trivial since it’s just the kernel
of fy: H K,z — (z,y). O
13.1.1 Orthonormal Basis

Theorem 13.2 (Riesz—Fréchet). Let H and an orthonormal subset
E C H be given. Then for all a € /¢35, there is a unique element
z € span F such that

T = Z Q.

n>1

Proof. Define a sequence (x,,)nen by 2, := Z?Zl ajej, then (,)nen
lies in E. Theorem 29 implies that Vm > n:

m
[Zm = 2nl® = lag|* = 0(m,n = ).

j=n

Therefore, the sequence (z,)nen is a Cauchy sequence. Since H is
complete, we know Iz € H such that x = lim,, z,,. O

Remark 13.1. Furthermore, the sequence « is determined by the limit
x since a, = (z,ep).

Definition. Let H and an orthonormal subset £ C H be given. For
all x € H, we define the set E, by

By i={yeM: (x,y) # 0}.

Definition. Let H and an orthonormal subset £ C #H be given. If
span ¥ = H, then F is called an orthonormal basis of HH.

Question 13.1. Does othonormal basis exist? If so, is it unique?

Theorem 13.3. Let H and an orthonormal subset £ C H be given.
The following statements are equivalent.

1. spanE = H,;

2. VeeH:z=3,

eeE, <$, €> €;
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3. VeeH:x=3 p (v,€)¢

4' Vx,y € H: <x,y> = ZeEEwﬂEy <.73,6> <y,6>;
5. B+ ={0}.

Proof. From Theorem 12.11, we know 1 < 2 <= 3. And we will
prove

2 4 5 1.

2 = 4: in the limit sense, we have

x = Z (x,e)e.

eck,

For all y € H, the map ( ,y) is a continuous functional and hence

<$,y> = Z <$,€> <e,y>.

ecE,

4 = 5: given an arbitrary element z € E+. Then
2
(,x) = Z [(z, e)|",
eel,

and the sum must be 0 anyway. Therefore, (z,z) =0 = = =0.
5 = 1: if there is an element z € H \ span F, from Corollary 12.9:
z]* > Ee€E$|<x,e>|2. From Theorem 13.2, we have

Jly € span F such that y = Z (z,e)e.
eckE,

Let z:=y —x, then 2z # 0. Foralle € E\ E;: (z,e) =0, (y,e) = 0.
For all e € E,: (z,e) = (y,e). Therefore, for all e € E: (z,e) =
(y,e) — (z,e) =0,1ie. z L E. Above all E+ 3 2, B+ # {0}. O

And we answer the existence part of Question 13.1.

Theorem 13.4. Let H be given. Then it must have an orthonormal
basis.

Proof. Let
F :={F € P(H): E is orthonormal}.

Then (F, C) is an partially-ordered set. For all totally-ordered subset
A C F, we prove that A has an upper bound. It suffices to show that
U A lies in F, i.e. |JA is orthonormal.For all e;,e; € |JA, there is
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some G;,G; € Asuch that e; € Gy, e; € G;. WLOG, suppose G; C G
then e;,e; € G;, which means (e;, e;) = 5f Thus |J.A € F is an upper
bound of A. Zorn’s lemma ensures that there is a maximal element in
F, and we denote it by M.

Claim. We have span M = H. In other words, M is an orthonormal
basis.

Clearly span M is a closed subspace of H, and Theorem 13.3 ensures
that span M = H is equivalent to M+ = {0}. If we have M+ # {0}, i.e.

there is an element y € M~ such that (y,y) = 0. Then M U {y} € F
is strictly larger than M, which is a contradiction. O

Example 42. The space ¢5 has the familiar completely orthonormal
basis (€, )nen-

Example 43. The space Ly[—m, 71| (denoted by Lo for short), with the
inner product

1
<,>:L2xLz—>K7(f7g)H§/ fgdm.
[77‘-77‘—]

has the basis

E = (én)nez, where we define e,,: [, 7] — C, x> ™.
Proof. We need some lemmas to finish this proof. Let C[—m,n] de-
notes the space of all continuous functions on [—m, 7], and Co, be the
space as defined in Week 8 Lecture 1 (but we restrict them on [—, 7]
in this example). Furthermore, let T[—m, 7] := span E be the space of
all trigonometric functions.

Lemma 13.5. The space C[—m, 7| is dense in Ls.

Proof of Lemma 13.5. It suffices to prove the case that simple func-
tions can be approximated, which can be ensured by the outer regular-
ity of Lebesgue measurable sets. See [1, Theorem 3.48]. O

Lemma 13.6. The space Csy, is dense in L.

Proof of Lemma 13.6. It suffices to show that Cs; is dense in
Cl—m,n]. Let an arbitrary element g € C[—m, x| be given. For all
6 > 0, consider

gs: [—m,m] — C,
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defined by
g(x), x € [—m, 7 —d;
r+— < hs(x), x€[r—4,7);
g(=7), x=m;

where hg is the affine map is selected to make that gs is continuous.
Then Lemma 13.7 ensures that lims_,¢||gs — g||, = 0 (remember, Dom-
inated Convergence Theorem ensures that convergence in norm, not
only changing the order of lim and |[).

Lemma 13.7. Let (X, A, 1) be a measure space and 2 be a metric
space. Fix a point tg € ). Suppose there is a function

[ X xQ—=Cz f(x,)
satisfying the following conditions:
1. for all x € X, the function t — f(x,t) is measurable;

2. for almost every x € X, the map t — f(x,t) is continuous at
to (i.e. there is a null set N such that for all x € N€¢ the map
t — f(x,t) is continuous);

3. there is a function h € £}(X, A, 1) such that for all t € €, we
have

|f (@, )] < h(z)

for almost every z € X (i.e. for each ¢ there is a null set V; such
that Vo € N7, we have |f(z,t)| < h(z)).

Then the function
F:Q—-Ct— F(t)= / flz,t) dp(x)
X

is well-defined and continuous at tg.

Therefore, we proved Lemma 13.6. O

Proof of Lemma 13.7. For all ¢ € Q, we have |f(z,t)| < h(z) for
almost every x € X, and hence f( ,t) € LY(X, A, u). Then f is well-
defined. To see that F' is continuous at tg, let an arbitrary sequence
(tn)nen that converges to tg be given, then we want to see

liTan/X f(x,tn)d,u(x):/xf(x,t) du(x).
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This can be proved by Dominated Convergence Theorem. Just let h
be the dominating function and

Newer = | Mo

n>1

is a null set such that Vn € N, we have f, := f( ,t,) is dominated by
h for all & ¢ N, ) O

neN’

Theorem 13.8 (Weierstrass). The space T[—m, 7] is dense in Cay,
with respect to the infinity norm || || .

Theorem 13.8 implies that T'[—, 7] is dense in Ca,, with respect to
the 2-norm || ||,. Proof of Theorem 13.8 can be found in many books,
such as [2, Chapter 2, Corollary 5.4].

Above all, we proved that span E = T[—m, 7] is dense in Lo[—, 7).

O

Remark 13.2. The space Lo[—m, ] has interesting properties.

1. for all f € Lo[—m, 7], we have

F=> (fex)en,

keZ

where the = means the limit with respect to Lo-norm (and hence
the Fourier series convergent to f in measure, which ensures that
there is a subsequence convergent to f almost everywhere).

2. in fact, in 1966, Lennart Carleson proved that: for f € Ly[—m, 7],

we have
fle) =Y (fren)er()

keZ

for almost every = € [—m, w]. Here is a relevant post.

3. abovel all, Ly[—m, 7] has the orthonormal basis (ej)rez. For the
space Lo[—1,1], it has an orthonormal basis: Legendre Polyno-
mial, defined as

1 4

2 n
=% (221
2nn! dzn (@ )"

P, (x)

for all n € Z>(. This also means that an orthonormal basis in a
Hilbert space may be not unique.

Theorem 13.9. Let H and an orthonormal basis £ C H be given.
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1. The space H is separable if and only if H has an orthonormal
basis;

2. If card E' = card N, then H & /o;
3. If card E =n € N, then H = K".

Proof. 1: if H is separable, let (z,)n,en € H be a dense subset. Pick a
maximal linearly independent subset of (z,,)nen, denoted by (Yn)nen-
Apply Theorem 12.10 to (y,)nen and we get an orthonormal sequence
(en)nen. It’s an orthonormal basis, since

H= Span(xn)neN = Span(yn)nEN = Span(en)nEN~
If H has an orthonormal basis (e, )nen, i.e.
H = span(ey )nen-

Consider the set

Ay, = spang{e;: j € [n]}
for all n € N, where spang means the vector space generated over the
field Q. Then A, is linearly isomorphic to a n-dim vector space over

Q, thus
card A,, = card Q" = card Q,

since card Q = card N implies that card Q" = card N* = card N, which
can be proved by induction. Now

Span@(en)neN = U An
neN

is a countable (since it is the countable union of countable sets) subset
of H, and it is dense in H. For all z € H, Theorem 13.2 ensures
that there is some a € f5 such that z = Zn>1 apén,. Then x can be
approximated by elements of span{e;: k € [N]} for big N, and hence
can be approximated by elements of spang{e;: k& € [N]}. Above all,
we proved that H = spang(en)nen-

2: let E := (en)nen be an orthonormal basis. Consider

D:H = b,z ((2,e,) )neN'

Then H is an isometry. Linearity follows from the linearity of the inner
product on H. It is surjective as Theorem 13.2. It is injective since
®(x) =0 <= z € B+ = {0}, as Theorem 13.3.

3: similarly. O
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13.2 Lecture 13-2

This lecture was given by Zhiyao Chen.
We assume that H is an inner product space and H is a Hilbert
space (over K) in this lecture.

13.2.1 Projection

Definition. Let E — H be a subspace. For all x € H, if there are two
elements zo € E,z; € E* such that © = x¢ + 21, then we say: g is the
projection of x onto E. The projection of x onto E is usually denoted
by TE.

There are 2 natural questions:
Question 13.2. Does the projection of x onto E exist? Is it unique?
Question 13.3. Are there more properties of g7

We answer Question 13.2 in this lecture, and some of Question 13.3.

Theorem 13.10. Let £ — H,x € H and xo € E be given. The
following statements are equivalent:

1. the projection of x onto E is just xq;
2. the distance as a infimum is reached at z¢: d(z, E) = ||z — zo|[;

3. for all z € F, the function
FRSRA ||z —z0 — 2|
reaches the minimum at 0.

Proof. 1 = 2: suppose x9 = zg. Then x — zg L E. On the one
hand: d(z,x9) > d(x, F). On the other hand: for all y € E:

2
2
lz =yl = ||(z — 20) + (x0 +v)
———
cF

2 2

= |lz — xol]” + [|xo — ¥l

> ||z — o|*.

Therefore ||z — y|| > ||& — zo||. Since y is arbitrary, we have d(z, E) >
[l = ol
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2 = 3: since for all z € E, we have g — Az € E, for all A € R.
Then the definition of infimum implies the result.
3 = 1: let z € E be given. The function f is differentiable at 0:

lim f(t) — f(0) ~ lim (x —xo —tz,x — 20 — t2) — (T — X0, T — Tp)
t—0 t—0 t—0 t
— — 2 2
— lim 2t Re (x — x9, 2) + t*||2|
t—0 t
= —2Re{x — x0,2).

And f reaches the minimum at 0 implies that f/(0) = 0. In other words,
Re (x — x0,2) = 0. Replace z by iz and we get Im {(x — x9,2z) = 0 and
hence (x — xg, z) = 0 holds for all z € E. Therefore, z — xy L F and
x( is the projection of x onto F. O

Theorem 13.11 (Projection). Let E < H be a closed subspace. Then
for all x € H:
Mzp € E: ||z — x| =d(z, E).

In other words, the projection of x onto F exists and is unique.

Proof. Existence: let a := d(z, E). By the definition of distance, we
can pick a sequence (y,)neny C E such that

VneN:a<|z—y,| <a+1/n. (31)

Now we prove that (y,)nen is a Cauchy sequence. For all m,n € N,
apply Parallelogram Law:

2
(a+1/n)"+ (a+1/m?) > ||z — Ynll® + |2 = Yo |?
2 2
= 2l = (g + ) /20 + g — 9 ]?)
> 2a2+2\|yn fym||2.

Thus lim,, »||yn — ym|| = 0. Since E — H is closed and hence com-
plete, there is lim,y, = y € E. Let n — oo in (31) and we get
|z — y|| = a, by the continuity of norm. Existence has been proved.

Uniqueness: if there is another § € E such that d(z,E) = a =
[l = gll, then

~112 2
2% = |z = §* + |}z — g
~ 2 ~112
= 2(llz — (v +9)/2I + Iy — 1)
> 2a° +2|ly — §)1*.

Thus ||y — 3|l =0, i.e. y = 9. O
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Remark 13.3. Another way to prove uniqueness:

2
a® = ||lz —y]

2

(z—9)+ (G —y)
—_— =
eE+L €E

~112 ~ 2
lz —gl" + lg — vl
b L]
Then y = 3.

In fact, we can change E to be a closed convex subset in Theo-
rem 13.11.

Exercise 13.1. Change E to be a closed convex subset in Theo-
rem 13.11 and prove the same result.

Theorem 13.12. Given H and E — H be a closed subspace, then
1. H=E®E*;
2. (BEH)*t=E.

Proof. The projection operator ensures that for all z € H, we have
r=xp+(r—xg) where 2p € E and v —xp € B+, thus H = E+ E*.
Then E N E+ = {0} ensures that H = E & E+.

It is easy to verify E C (E+)%. For another direction, taking an
arbitrary x € (E+)*, i.e. * L E*, consider the projection Pg: we have
z = x1 + xo where 1 = Pgx € E, £9 = x — Pgx € E+. Now we prove
z9 = 0 and hence x = 7 € E. Look at the inner product:

(x2,x2) = (x,@2) — (T1,22) =0—-0=0

because x € (E+)1, Xy € E+ ensures the first 0 and z; € E, 29 € B+
implies the second 0, as we wanted. 0

Remark 13.4. More than H = E @ E*+: for H 3 x = y + z, where
y € B, z e EL, we have ||z]|* = |ly||> + ||z||* as Theorem 29. ]

Corollary 13.13. For all E < H, we have (E+)t = E.

Proof. Because E+ = (E)L O

Consider a simple and familiar example.
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Example 44. We have R? = E® E+, where E = {(z,y) € R?: y =0}
and B+ = {(z,y) € R?: 2 = 0}. [ ]

Remark 13.5. Above all, given a Hilbert space H and a closed sub-
space E — H, we have studied:

1. the existence of projection: for all z € H, Jlzp € F such that
x—xp € B,

2. the orthogonal decomposition H = E @ E+;
Finally, we prove that Pg € B(H, E).

Proposition 13.14. Given H and a closed subspace E — H. Then
Pp € B(H,E).

Proof. Linearity: for arbitrary x,y € H, we have
T=2Zp+T,Y=YE th
where v = Pg(z), yg = Pg(y) and x1,31 € E+. Then
z+y=(ze+ye)+ (z1+y1)

where zp+yg € E and x1+1y;, € E+. Since H = E®E™ is a direct sum,
we know Pg(z +y) = zg + yg. Similarly we know Pg(kz) = kPg(x)
for all k € K.

Boundedness: from Remark 13.4, we have

lz|* = || Pez|* + & = Ppz|” = || Peall®,

which implies |Pg|| < 1. And in fact, |Pg| =1 if E # {0}, |Pr|| =0
when F = {0}. To see this, take an arbitrary 0 # = € E (if possible)
and we have Pg(z) = x. O

For more properties of projection operator, see Lecture 14-2 .

13.2.2 Further Topics

Reference: Characterizing compact sets in L,-spaces and its applica-
tion.

Throughout this part, X is a Borel-regular Borel metric measure
space such that every open ball with positive radius has a positive and
finite measure (definitions can be found below).

We studied compactness and relative compactness in Lecture 6-1 .
Recall: in a metric space (X,d), a subset F' C X is
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e relatively compact, if and only if the closure of it, i.e. F is com-
pact;

e compact, if and only if it is closed and relatively compact.

Notation. We use the operator 7, for a € R", whose definition can
be found in Fourier series’s divergence. For convenience, let B(y,r) be
the closed ball for a metric space Y, centered at y with radius r.

Theorem (Kolmogorov-Riesz). For p € [1,00), given a subset F C
L,(R™), where R" is equipped with the Euclidean metric, Lebesgue
measurable sets M and Lebesgue measure m. Then F' is relatively
compact, if and only if the following conditions are satisfied.

L. it is bounded, i.e. sup;cp| fll, < oo

2. the two limits hold
lim supHTrf —fll, =

}1{1130 sup ||f Xe\BOR||, =

The result is generalized as following:

Definition. Let (X, M, u,d) be a metric measure space. It is said to
be Borel, if M contains the Borel o-algebra, the o-algebra generated
by all open sets. It is said to be Borel-Regular, if each £ C X is
contained in a Borel set B such that u(B) = p(E). It is said to be
doubling, if there is some A > 1 such that

u(B(x,2r)) < Mu(B(x, 7))
for all x € X, r > 0. The above A is called the doubling constant.

Theorem. Let (X, d, 1) be a doubling metric measure space and p > 1.
Suppose that
inf{u(B(z,r)): z€ X} >0

for any » > 0. Then F C L, := L,(X,d, i) is relatively compact if and
only if the following conditions are satisfied.

L. it is bounded, i.e. sup;cp| fll, < oo

2. the two limits hold
lim sup|4,f — 1], = 0.

dlanllnEf<oo ;upr XX\EH ’
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where the operator A, is defined as following.

Definition (Average Operator). Let (X,d,u) be a metric measure
space . For p > 1, we define an operator A, on L, := L,(X,d, n)
for all » > 0. The average operator

Ar: Ly = Ly, [ = (Arf),

where A, f is defined by

A f(z) = W(B@ 1) /B(“) fdu,

i.e. the average value of f with respect to the ball centered at x with
radius 7.

And in 2022, Katsuhisa Koshino proved the following result in Char-
acterizing compact sets in Lj-spaces and its application .

Theorem. Let (X, d, 1) be a doubling metric measure space and p > 1.
Suppose that for any x € X and any r > 0,

w(B(z,m)AB(y,7)) — 0

as y — «. Then F C L, := L,(X,d,p) is relatively compact if and
only if the following conditions are satisfied.

L. it is bounded, i.e. supscp| fI|, < oo

2. the two limits hold
lim sup (|4, f — fl, = 0,
r—0 fEF

dianilnEf<oo ;ggnf ’ XX\EHP =0.

And it is natural to ask, is it possible to generalize the result to
L.y, the variable Lebesgue space?
Reference about variable Lebesgue spaces: Variable Lebesgue Spaces.
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14 WEEK 14

14 Week 14

14.1 Lecture 14-1

This Lecture was given by me.

Recall

Last Thursday, we studied “projection on Hilbert space” let H be a
Hilbert space and E — H be a subspace of H. Then for all x € H,
there is a unique Pg(x) € H such that x — Pg(x) L E. As a corollary:
we have a direct sum decomposition:

H=E®E".
Furthermore, there is a non-trivial duality:

(EHt =E. (32)

14.1.1 Riesz Representation Theorem

We have studied duality of linear normed spaces: dual spaces and con-
jugate operators. Hilbert spaces are special linear normed spaces; let
H be a Hilbert space ( ), then for
all y € H, there is a bounded functional on H induced by y (more
precisely, by fixing y at the second position of the inner product):

H >¢,: H-K oz (z,y).

Then ¢: H = H*,y — ¢, is conjugate-linear and keeps norms. The
map ¢ depends on H (also denoted by ¢ for clarity), is a conjugate-
linear injection satisfying || ||z oo = || || -

Theorem 14.1 (Riesz Representation Theorem). Let H be a Hilbert
space, then Vf € H* 3lyy € H such that

Ve e X: f(z) = (z,yy) .
Furthermore, we have || f|| . = [lysll ;-

Proof. We prove the existence and uniqueness of ys for all f € H*.
Let an arbitrary functional f € H* be given.

1. Existence: if f = 0, it suffices to take yo = 0; suppose f # 0, i.e.
N :=ker f # {0}. As we know, ker f is a closed subspace of H
and there is a direct sum decomposition of H:

H:NQ}NL
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Taking an element 0 # y € H+. Then f(y) = 0, since f(y) =
0 = y € N, and at the same time N+ >y # 0, thus y ¢ N.

Claim. We have

flx) = <x, f(ygy> Vo € H.
[yl

To see this, notice that for all x € H:

szyGN,

f()

thus it’s perpendicular with y € N*, i.e.

Simple calculations imply that

flz) = <3:, f(ygy> ,Vr € H.
[yl

f)
lll®

Uniqueness: suppose both of y, ¢ satisfy that for all x € H:
(,yf) = fz) = (z,7).

Then take z = yy — ¢, and we see (yr —g,yy — gy = 0, which
implies y — y = 0. O

Let yy := -y and we’re done.

Remark 14.1. Here we can’t change the “a Hilbert space” to “an in-
ner product space” in Theorem 14.1. In other words, completeness is
necessary in some sense. See Example 45. |

Remark 14.2. This proof can be decomposed to 2 ideas:

1.

Two linear functionals (not needed to be continuous) on a vector
space have the same kernel if and only if they are scalar multipli-
cation of each other.

Proof. Consider a vector space V over the field K. Suppose

f,g € V¥ has the same kernel N = ker f = kerg. If N = V,
then f = g = 0 and we’re done. Else, if N # 0, consider the
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quotient space V/ N> which is isomorphic to K since both of f, g
are isomorphisms. Then dim V/N = 1, and so is [:(V/NJK).

Consider the quotient map n: V — V/ v and it induces f ,g as
the following commutative diagram

V*MK

et

Then we know f ;g # 0 and the diminsion implies that there is
0 # ¢ € K such that f = ¢g. Now for all x € V, we have

f(@) = f(n(2)) = cj(n(@)) = cg(),

since the diagram commutes. O

2. Then consider a Hilbert space H. To find a vector y such the
functional f € H* is just ¢, as defined above, it suffices to find
y such that ker(p,) = ker f. What’s ker(y,)? The set of vectors
that are orthogonal to y. If ker f = {v}*, then the duality (32)
implies that

span{v} = (ker f)*.

Thus if a non-zero vector of (ker )+ was found, then we were
done. ]

Example 45 (Not Complete Space). Consider the inner product space
(the space of all finitely supported sequences) ¢, < ¢2, where

ce = {x = (2p)nen € "K: x,, = 0 for all but finitely many n}
and /5 is equipped with the usual inner product. Then the functional
oo
fiece > Kz an/n
n=1
is bounded, with norm 7/1/6 but there is no element y € c. such that
Vo € c.: f(x) = (z,y).

Definition (Conjugate-Isometry). Let H, K be 2 linear normed spaces.
If f: X — Y be a conjugate-linear bijection such that

Ve e X: |[f(@)lly = [lzllx,

then f is said to be a conjugate-isometry. We write H = K if
conj
there is an conjugate isometry from H to K.
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Corollary 14.2. For a Hilbert space H, there is a conjugate-isometry:
o H — H, y = o(y) = ¢y,
where the map ¢, is defined as follows
oy H—=> Kz (z,y),
for all y € H.
Proof. Theorem 14.1 implies that ¢ is bijective. Furthermore, ¢ is

e conjugate-linear: let arbitrary y,z € H and k,l € K be given.

Then
Vo € H: ppyti:(x) = (x,ky +12)
=k (z,y) +1(z,2)
= ‘Py(x) + l@z(x)
= (kpy + lp2)(2),
and hence

Phy+lz = ];'903; + Z_§02~
e isometry: it suffices to show that it keeps norms. Let y € H be
an arbitrary fixed element. Then
Vo e H: [py(z)| = [z, )| < ]| - lyll,
. 2 . .
which means ||, || < [lyll. And ¢(y) = [|ly||” implies that [|¢,[| >
[y, thus [ley|l = [lyll.

Above all, ¢ is a conjugate-isometry. O

Remark 14.3. The conjugate isometry given by this corollary is called
the Riesz map (with respect to H), also denoted by (.

Example 46. Consider a measure space (2, %, ). Then Lo(, %, u)
is a Hilbert space (denoted by Lo for short from now on). This implies

L, = L.
conj

~

On the other hand, we have Ly = Lo, since
conj

id,: Lo = Lo, f = (frwe f(w))

is a conjugate isometry. Then o2 oidy, is an isometry from Ly to Lj.
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Question 14.1. For an inner product space X, if it’s complete, i.e. a
Hilbert space then there is a conjugate-isometry from X to X*. Does
the reversed proposition holds? In other words, if there is an inner
product space X and there is a conjugate-isometry from X to X*, then
X is a Hilbert space.

We will answer this later.

Proposition 14.3. Let H be a Hilbert space and ¢ be the bijection of
above corollary. Then the norm (as a operator norm) of H* is induced
by the following inner product:

(Ve s H X HS = K (0(y), o(2) = (2,0) g (33)

and H* is a Hilbert space.

Proof. It suffices to prove that || ||,;. satisfies the Parallelogram Law
and apply Theorem 12.6. Consider the Theorem 12.4: for all x,y € H

lo(y) + e @) + [l (y) — ()|
= lle(y +2)II* + llely — 2)II”
= lly+=* + |y — |
= 2(lyll* + Il=]*)
= 2(le@)I* + lle(@)]*).
Then Theorem 12.6 implies that || ||, is induced by an inner product

(, )~ Now we prove (33). WLOG, let K =R. Then apply the polar
identity: for all z,y € H

_ lle@) + e@)II* — lle@y) — o)

(p(y), o()) - 1
_ le(y + 2))1 = llely — 2)|?
4
_ ly + ) = Iy — ||?
4
= (y,z) = (z,y) .
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For the case K = C, proof is similar:

(), p(2)) g = 5 Z alle(y) + ap()]?

a41

1 — 2
LS allpty+an)l

at=1

1 _
7 ally +

at=1

=1 Bly+ gl

Bi=1
= (y, )
= (z,9).

The space H* is the dual space of H and must be complete. O

Theorem 14.4. Every Hilbert space is reflexive. In other words, for all

Hilbert space H, the canonical embedding ¢y : H — H** is an isometry.
And 1y = " o pH

Proof. Theorem 14.1 gives an conjugate-isometry ¢ : H — H*. We
have proved that H* is a Hilbert space, thus there is an conjugate-
isometry ¢ from H* to H** = (H*)*

Claim. The natural embedding is just the composition of 2 conjugate-
isometries: 1ty = o o pf. In other words, the following diagram
commutes

H—" g

N

The theorem is proved as long as the claim is proved.

Taking arbitrary € H and H* 3 f = ¢(y), where y € H, we have
[ea(2)](f) = 2(f) = f(z) :

and

(™ o™ (@)](f) = [¢™ (" ()] (f)
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Thus
ur(@) = (9 0 p™)(2)
holds for all z € H. And hence 157 = o o pfl. O

Now we answer Question 14.1.

Answer of Question 14.1. That’s true (and this proof is almost the
same as the proof of Theorem 14.4). In other words, Riesz’s Theorem
states a property that only Hilbert spaces enjoy.

We prove that there is an conjugate-isometry from X* to another
Hilbert space. Let ¢: X — X* be the conjugate-isometry, Let Y :=
X* and Y* be the dual space of Y, then both of Y,Y™* are Hilbert
spaces. There is an conjugate-isometry

O Y s Y o) =, g

given by Theorem 14.1. Just like what we do in the proof of Theo-
rem 14.1, we can define an inner product on Y* such by

Vo, f €Y : (0" (9),0" (). = {f.9)y »

which induces the norm on Y*. Then consider p:= @Y op: X — Y*,
which is an isometry. Thus X = Y* and hence X is a Hilbert space. [

Remark 14.4. Let H be a Hilbert space, the conjugate-isometry from
H to H* doesn’t need to be unique. In fact, it suffices to show that
there are some Hilbert spaces that have at least one non-trivial “auto-
isometry”. Consider the following examples:

Example 47. The Hilbert space ¢2(Z), whose elements are all square
summable sequence from Z to K:

0o(Z) == {z € “K: Y |wn|” < 00}
nez

Then the k-shift operator is an “auto-isometry”:
T Uo(Z) = Lo(Z),x — (Thz: n— Tp_g).

Therefore, F' := ¢ o A, is a conjugate-isometry from ¢2(Z) to (ZQ(Z))*

l2(Z)
w N
0(Z) —2— (02(Z))

*

This example can be generalized to Ly (G), where G is an Abelian group
with a suitable measure. |
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14.1.2 Application

We introduce some notions similar to inner product (just like the rela-
tion between sub-linear functional and functional).

Definition (Bilinearity, Sesquilinearity and so on). Let H, K be 2
linear normed spaces. A map 1: H x K — K is said to be

1.

Y(kx +ly, 2) = kp(z, 2) + (y, 2),
Y(x, kz + lw) = k(x, 2) + lp(x, w).

2. a sesquilinear functional, if for all z,y € X,z,w € Y and
k,l € K, we have

Yk + 1y, z) = kp(z, 2) + 1h(y, 2),
v(x, kz + lw) = l;n/)(:c, z) + 12:1/1(93, w).

3. a bounded functional on H x K, if v is bilinear or sesquilinear

and the supermum sup,<1|¢(z, y)| is finite. Equivalently, there
=l <1
is M > 0 such that

Vee X,y eY: [P(z,y)| < Mlz| -yl

And denote supy,<1[¥(x,y)| by [[¢| (|| || is a norm).

|<1
llzll<1
Remark 14.5. Inner product is a special sesquilinear functional.

Remark 14.6. For the boundedness of i, we don’t need H x K to
have a norm. The boundedness is an abstract general version of Cauchy
Schwarz inequality. Here is another possible interpretation for the case
that v is bilinear: consider the tensor product of H and K, i.e. a pair
(X ®Y,0) satisfying the universal property of tensor product. Then
the following diagram commutes:

HxK (@,y) —— ¥(z,y)

Here H @ K is a linear normed space whose norm satisfies

Vee HyeK: |lz@yll = |z - lyll
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Let
Brgr2 5= {H(x,y) —20ye XR)Y:xecBpye BF},
then

sup [¢(z,y)| = sup |(¥o0)(z,y)| = sup [¥(z®y)l
]| <1 <1 c@yes
lyli<1 lyli<1

And in fact, the convex hull of S is just B g p. Thus

sup|U(u)| = sup [¥(u)| = [|¥] g g r)-
ues uEBE @ F

In other words, the norm % is just the norm of the bounded linear
functional W. ]

Theorem 14.5 (Representation of Sesquilinear Functional). Let H, K
be 2 Hilbert spaces. Then ¢: H x K — K is a sesquilinear functional
if and only if 3T € B(H, K) such that for all z € H,y € K:

Furthermore, if T' exists then it’s unique, and satisfies: ||T|| = ||¥||.

Proof. For all € H, consider the map f,: K — Ky — ¢(x,y).
Then f, € K*. Riesz Representation Theorem implies that there is
a unique element, which will be denoted by Tz, such that for all x €
H,yeK:

fo(y) = (W, Ta) e,
ie. forallz € H,y € K:
P(z,y) = (T2,y) K -

Applying the uniqueness of Riesz representation Theorem, we see that
T is linear. O

Remark 14.7. To get an element in K representing a bounded linear
functional, we should give a bounded linear functional on K. Thus we
fix z € X and consider ¥(z, ). [ |

Theorem 14.6. Let H, K be 2 Hilbert spaces and T' € B(H, K). There
is a unique bounded operator S € B(K, H) such that

Vee Hye K: (Tx,y), = (x,Sy)y -
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Proof. Let

v: K x H—=K, (y,z) = (Tz,y).
Then 1) is a sesquilinear bounded functional. Apply Theorem 14.5. [

Definition (Adjoint Operator). Let H, K be 2 Hilbert spaces and T' €
B(H, K). The operator S uniquely determined by

Vee Hye K: (Tx,y), = (x,Sy) -
is called the adjoint operator of T', which will be denoted by T"*.

Remark 14.8. For convenience, we will denote the conjugate operator
of T by T and the adjoint operator of T' by T*. |

There is an interesting relation between adjoint and conjugate op-
erators:

Theorem 14.7. Let H, K be 2 Hilbert spaces and T € B(H, K). Then
T* € B(K, H) is the unique bounded operator such that the following
diagram commutes:

H +-—- K
T*

Al e

H*%K*
T)k

Proof. We check that T o o = o o T*. Let an arbitrary element
z € K be given. On the one hand:

et o T*(2) = o1,
and hence for all y € H
[ o T*(2)](y) = pialy) = (4, T*2) y = (Ty, ) -
On the other hand:
(T 0 ") (@) =T (o) = ¢z o T
and hence
(T 0 ™) (@)](y) =[x o T](y) = @5 (Ty) = (Ty,2) -

Since y is arbitrary, we have (T%* o o) (z) = (o o T*)(z). And z is
arbitrary, therefore 7% o ©f = H o T*, O

Page 156 of 198



14.2  Lecture 14-2 14 WEEK 14

Remark 14.9. This theorem means that {pf: H € Ob(Hil)} is a
natural transformation from the Banach functor to the Hilbert functor.

Remark 14.10. We can also define the adjoint operator by this. In
other words: both ¢, X are conjugate isometries, we define T just
by

T* = (QOH)71 OTb* o @K

Linearity and boundedness are ensured by conjugate linearity and lin-
earity of the maps and the fact that they are all bounded. |

14.2  Lecture 14-2
This lecture was given by Chen Li.

Notation. In this lecture: We write H, K to be 2 Hilbert spaces unless
otherwise specified and the composition of two operators is written T'S
for short sometimes.

Recall

In the last lecture, we studied the conjugate operator:

Definition. Let H, K be 2 Hilbert spaces and T' € B(H, K). There is
a unique operator T* € B(K, H) satisfies

Vee Hye K: (Tz,y) = (x,T"y) y,
which is called the adjoint operator of T'.
Naturally we consider the special case: K = H and T = T™:
Definition. An operator T' € B(H) is said to be a self-adjoint op-

erator, if T* =1T.

14.2.1 More about adjoint operators

Then we introduce some useful equivalent conditions for an operator
to be a self-adjoint operator.

Proposition 14.8. Let T € B(H). The following statements are
equivalent:

1. it’s a self-adjoint operator;

2. the bounded sesquilinear functional ¥r: (z,y) — (Tz,y) induced
by T is Hermitian.
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Here a Hermitian functional means:

Definition. A sesquilinear functional ¥: H x H — K is said to be
Hermitian, if

Va,y € H: U(x,y) = U(y,x).
Furthermore, if K = C, they are both equivalent to
3. for all x € H, we have (T'z,z) € R.
Proof of Proposition 14.8. We prove in the following order:

1 9 3 =€, 9

1 <= 2: T=T"if and only if for all z,y € H,

(Tz,y) = (z,Ty),
- Up(z,y) = Vr(y, o),

which means W7 is Hermitian.
2 = 3: this doesn’t need K = C. Suppose ¥ is Hermitian, then

Vee H: (Tx,x) = VUp(z,z) = V(z,z) = (x,Tz),

thus (Tx,z) € R

3 = 2: suppose K = C. We apply the polar identity (for a
seseuilinear functional, since the proof of polar identity only needs the
sesquilinearity of inner product): let

Q: H—-K,xw— Up(x,z) = (Tx,z).

Notice that, we have Im Q C R since ¥r is Hermitian. Then we have:
for all x,y € H:

3
Wr(z,y) = Y i*Qz +i*y),
k=0
3
Wr(y,z) =Y i*Qy+i*a).
k=0

Checking that they are conjugate to each other is boring and hence
omitted. Therefore, we know ¥ is Hermitian. O

Now we introduce some examples about adjoint operators.
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Example 48. Consider H = K” and K = K™ and T € B(H,K) =
B(K™,K™). Then there is a matrix representation of 7" with respect to
the standard bases:

{aj €K" : a; = (0,...,0,1,0,...,0)", 5 € [n]},
N—_——

j—1 items
{Br €K™ : B, = (0,...,0,1,0,...,0)" k € [m]}.
N—_——

k—1 items

Let My be the corresponding m x n matrix of T'. Similarly T™* corre-
sponds to a matrix Mp«. Then Ta = Mypa for all a € H.

Claim. We have My = MH ie. the matrix of T* is just the
conjugate-transpose of M.

I.Dro[oﬁ'. Let My = (ajvk)ii[[ﬂ] and Mp- = (bkyj);?g[[gfl. Then for all
J € |nf

Taj = MTOéj = Zalﬁjﬁj‘
1=1
For all k € [m]:
(Tay, Be) = (o, T" Br) -
Replace T, T* with Mp, M7+ and we get

Zal,j (B, Br) = Zgl,k (0, o)
=1 =1

Thus Qk,5 = 05 k- ]

Example 49. Let £ — H be a closed subspace. Consider the inclusion
mapping
g F— H, x— x.

Clearly it’s a bounded linear map.
Question 14.2. What’s the adjoint operator of g ?

Answer and Proof. The adjoint operator of g is the projection onto
E,ie 'y =Pg: H—= E,x— xg where zg is the unique element in
FE such that © — zg | F, as defined before.

Now we prove this. For all x € E,y € H:

(pr,y)y = (0 pW)p = (@Y —15Y))g =0

Thus E Ly —5(y), i.e. ¢(y) = Pr(y) and hence Py = ¢};. O
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Remark 14.11. This also proves that Py, = k. |

Now we back to the topic about projection and look for some equiv-
alent descriptions of projection.

Theorem 14.9. Let P € B(H), then the following statements are
equivalent:

1. it’s a projection operator composed with the embedding 1p: F —
H,ie. P = .o Pg where F — H is a closed subspace and Pg
is the projection onto E;

2. it’s idempotent and self-adjoint, i.e. P2 = P and P* = P;
it’s idempotent and satisfies ker P 1 Im P;

(in the case K = C) for all x € H: (Pz,z) = ||Pz|*;

oo W

there is a closed subspace E < H such that (;; = Po.g.

Proof. Example 49 implies that 1 is equivalent to 5.
1= 2. Let E — H and P = tg o Pg be given. Then for all x € H:
P(z) =g o Pg(x) = Pg(x) € E, and hence

P*(z) = P(P(z)) = tg o Pp(P(z)) = tp(P(2)) = P().

We proved P? = P. For all z,y € H: we have £ = Pgx + 21,y =
Pry + y1 where z; L E,y; L E. Thus

(Pz,y) = > (z1,9)

z, Py) + (z,y1) — (z1, Py) — (w1, %)
Py) + (x1 +y1) + (Px,y1) — (T1,91)
P

y) -

Therefore, P is self-adjoint.
2 = 3. Let x € ker P and y € Im P be given. Suppose z € H
satisfies y = Pz, then

(z,
(
(
=

Z,
x,

(x,y) = (x,Pz) = (Pz,z) =0

since Pz = 0. (In fact, P is self adjoint implies ker P L Im P.)

3 = 1. What we need to do is to find a closed subspace F — H
such that P = 1g o Pg. If P = Pg, then Im P = E = ker(idy —P) and
E+ =ker P. It’s natural to consider a kernel (that is naturally closed).
Thus, let E := ker(idyg —P), then we want to prove P = Pg.
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e First, we have ' = Im P. Let y € Im P, then there is some x € H
such that y = Pz = P?z and hence

0 = Pz — P?z = P(x — P(z)) = (idyg —P)(Pz) = (idg —P)(y),

which means y € ker(idg —P). And we proved InP C E. Let
z € E,ie z€ker(idg —P), i.e. z= Pz. Then z € Im P. Thus
ECP.

e Secondly, we have P = Pg. It suffices to prove that for all x €
H:x—Px L FE. Forall ye E, we know y € Im P and hence

<y7 T — Pl’> = Oa
where the equality follows from: ker P | Im P and

P(x — Px)=(P—P*)(2) =0 = z— Pz € ker P.

2 = 4. This doesn’t need K = C. For all z € H, we have
(Pz,z) = (P*z,2) = (Pz, P*z) = (Pz, Px) = | Pz’
4 = 2. Suppose K = C. Consider the sesquilinear functional
Up: Hx H— C,(z,y) — (Px,y) .

Then Proposition 14.8 implies that T is self-adjoint. Since P is self-
adjoint, we have

(P2x,a) = (Px, Px) = | Pal]%,

thus ((P? — P)z,z) = 0. Then consider the polar identity for a
sesquilinear functional (whose proof is the same as the proof for the
case that a sesquilinear functional is an inner product, which only needs
the sesquilinearity of an inner product). We have: for all z,y € H:

3

((P* = Pe,y) = i ((P* = P)(a +i"y),a +i"y) = 0,
n=0

and hence P2 — P = 0.
Everything has been proved as the following diagram.

(4) ()

@) —
| .
)
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In fact, we have also proved the following result

Corollary 14.10. If K = C then T € B(H) satisfies that Vx €
H: (Tz,x) =0if and only if T = 0.

Notice that: let pr(H) be the set of all projection operators in H
and cs(H ) be the set of all closed subspaces of H, we have proved that
there is a bijection

IT: cs(H) — pr(H) —, F — Pg,

whose inverse can be interpreted as ker, i.e. the inverse of II maps
a projection operator to the kernel of the projection operator. Since
there is a natural partial order on cs(H): C. Then we define a partial
order < on pr(H) as follows:

Py < P <— MQE,

i.e. let II keeps the order. The following theorem give some equivalent
descriptions of this order.

Theorem 14.11. Let M, E € c¢s(H) and Py, Pg is their correspond-
ing projection operators (regarded as operators in B(H)). Then the
following statements are equivalent:

1. the order relation holds Py, < Pg;
2. they commute and satisfy: Pg Py = Py Pr = Py
3. the difference is a projection: Py — Py € pr(H);
4. for all x € H, (Pyx,z) < (Pgx,x);
5. for all z € H, || Pyz|| < ||Pex|.
Remark 14.12. For the forth, the numbers are real, see Theorem 14.9.

Proof. 1 = 2: from definition, we know M C E. For all z € H, we
have
r = Pyx+x,xr = Pgx+ 29,

then PgPy(z) = Pg(Pyx) = Py, since Pyx € M C E. Then
Py (Prx) = Py (x) + Py(x2) where x9 = v — Ppx L E. Then xy L M
and hence Pys(x2) = 0, which ensures that

PM(PEJZ) = PM(x) + PM(JZQ) = PM(QL‘)

Above all, PMPE = PEPM = PM.
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2 = 3: it suffices to prove that Pg — P); is idempotent and self-
adjoint. They are both true, since

(Pg—Py)? = P2 —PgPy—PpPuy+Pi = Pg—2Py+Py = Pe—Pyy.,

and (Pg — Py)* = P, — Py; = Pg — Py, as we wanted.
3 = 4: suppose Py — Py = Py, where N € cs(H), then for all
e H:

(Pgx,z) — (Pya, ) = (Pga — Py, x) = (Pyz,z) = ||Pya||* > 0.

4 = 5: this follows from 4 of Theorem 14.9
5 = 1: consider

Py<Pp & MCE < MDE".

For all x € E+, we have Pgz = 0 and hence ||Pyz| < ||Pgz| = 0,
thus Pyyx =0, ie. x € E+. Therefore, we know M+ D EL. O

From the proof above, we find that there is some closed suspace
such that Pg — Py = Py, and it’s natural to ask the relation between
E,M,N.

Theorem 14.12. Then the following statements are equivalent:
1. two operators are orthogonal: Py; Py = 0;
2. two operators are orthogonal: Py Py; = 0;

3. the addition of two operators is a projection, i.e. Py + Py is a
projection;

4. the two subspaces are orthogonal, i.e. M L N.

Proof. 1 <= 2: suppose 1 holds. We start from inner product since
it enjoys good properties; for all x € H:

(Py Py, PyPyz) = (Pya, Py Pyz)
(Pyx, Py Pyz)
(x, (PvPn)Przx)

= <$,0>
0

thus Py Pyrx = 0(Va € H), i.e. PyPy = 0. By the symmetry, we have
also PyPy =0 = Py Py =0.
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2 = 3: clearly Py; + Py is self-adjoint. And
(Pr + Pn)? = Pyp + Py Py + PPy + PR = Py + P,

then Py; 4+ Py is a projection.

3= 4:let x € M, y € N be given. Suppose Pg = Py; + Py, then
Pr — Py = Py, and Theorem 14.11 implies M C E. For all x € M,
then Pgx = Pyx; for ally € N, Pyy =vy. Then for allx € M, y € N:

2<$,y> =

thus (x,y) = 0. Since z,y are arbitrary, we have M L N.
4 = 1: for all x,y € H, we have

<P]\4f’]\[l’7 y> = <PN$, P]L[y> =0
since M 1 N. Thus Py;Py = 0. O

Here we talk something about algebra. From now on, view H as a
K-module.

Definition (Module). Let R be a commutative ring. An R-module
is an abelian group M with addition operation + and a map R x M —
M, (r,m) — rm that satisfies the following axioms; for all m,my, mg €
M and r,71,79 € R:

1. Identity Law (if R has an identity 1): 1m = m;
2. Distributive Law f1: (ry + r2)m = rym + rom;
3. Distributive Law £2: r(my + mg) = rmq + rmy;
4. Associative Law: (rirq)m = ri(ram).
Remark 14.13. An R-module is a vector space over the ring R. W
Then a vector space over K is naturally an K-module.

Definition. A chain of R-modules is a sequence of R-modules and
R-module homomorphisms

f1 f2

My —Ls My My — Py o Iy, (34)
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An exact sequence is a chain (34) such that
Vk € [n—1]: ker fr41 = Im f.

A short exact sequence is a five-term exact sequence in which the
edge modules are 0; i.e. an exact sequence of the form, where the arrow
with domain/codomain being 0 is just 0:

0 M, —— My —2 s My 0. (35)

Thus a chain of the form (35) is a short exact sequence if and only
if the four conditions are satisfied:

1. f is injective;

2. g is surjective;

3. gof=0;

4. g(n)=0 = Im: f(m) =n.

Claim. Suppose M, N — H satisfy M | N. Then the following chain
is a short exact sequence

Py N 0. (36)

Proof. By definitions, we know ¢, is injective and Py is surjective,
thus it suffices to show Pyorpyr =0and Py(y) =0 = Fz: 1y (x) = y.

0 M 22 s MeN

1. Pyoupy =0: for all z € M, we have
Py ouy(z) = Py (um(z)) = Py(z) =0,
since z € M and M L N implies Py(z) = 0.

2. Py(y) =0 = 3z:upm(x) = y: suppose Py(y) = 0 for some
yE M@ N, theny € M < M @& N and hence M >y = 1p/(y).
To see that y € M: suppose y € M @ N satisfies Py (y) = 0, then
y € M & N implies

y=1v +zforsomey € M,zc N.

Now z € N implies Pyx(z) = z, while Py(y) = Pn(y') + Pn(2),
thus
0=Pn(Y)+z ie. —z=Pn(y).

But M NN = {0} since M L N, then z = 0, Py(y) = 0 and
hence y =y’ € M. O
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Furthermore, we can apply the covariant functor B(H, ) on the chain
(35) to get another chain:

0 — BH,M) 2% gH, Mo N) % BH,N) —— 0
where f, := B(H, f) is defined as follows for each f € B(A, B):

f«: B(H,A) = B(H,B),g+ fog.

Theorem 14.13. The chain

0 — BH, M) 0 g, maN) Y ga,Ny (37)
is exact.

Proof. We should prove 3 points: (tp7). is injective, (Py)«o(tar)s =0
and (Pn)«(9) =0 = 3f € B(H,M): (tm)«(f) = 9.

1. (ear)« is injective; i.e. ker(eas)s = 0. Let f € ker(eps)«, equiv-
alently, (¢pr)«(f) = to f = 0. This implies f = 0 and thus
ker(epr)« = 0.

2. (Pn)« o (tar)« = 0: this is implied by the functor property, but
we also check it: let f € B(H, M), then

[(Pn)« 0 (ear)s] (F) = (Pn)x [(ear)(f)]
= (Pn)«(trro f)
=Pyouyof
—0of
— 0,

since Py oty = 0, which follows from the fact that (36) is exact.

3. (Pn)«(g) =0 = 3f € B(H,M): (tm)«(f) = ¢g: from
(PNn)«(g9) = 0, we know that Img L N, while Ing C M & N,
where M 1 N, thus Img C M. Then we have an element

f=g™:H - Mz g(a)
that lies in B(H, M) satisfying g = (tar)«(f)- O

Remark 14.14. This theorem means that the functor B(H, ) is left-
exact. ]
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Definition. Two projection operators Pys, Pg are said to be orthog-
onal, if PMPN =0or PNP]W =0.

Finally, we prove that the family pr(H) C B(H) is closed. In gen-
eral, this family is not closed for addition, thus it has no algebraic
structure.

Lemma 14.14. If (P,),en C pr(H) and P, > P(n — o0), then
P € pr(H).

Remark 14.15. Since convergence in norm implies strong conver-
gence, this implies that pr(H) is closed in B(H).

Proof of Lemma 14.14. We prove that P is bounded, satisfying
P? = P and P* = P.

It is bounded: see Theorem 8.1 and apply the fact that |Pg|| < 1
for all E € cs(H).

It is self-adjoint: for all z,y € H, we have

(Px,y) = <li7rlnPn:1c7y>
= 1i711n (Phx,y)
= lién (x, Ppy)
- <x,lirrlnPny>
= (z, Py).

It is idempotent: for all € H, from P? = P,, we have

|(P? - H:H(P2 P,P+ P,P — P + P, — P)z|
< (P = Pp)(Pa)|| + | Pal[| (P — Po)z|| + [|(Pn — P)z||
< II( Po)(Px)|| + [[(P — Pp)x|| + ||(P. — P)z||

since P, = P. Thus (P? — P)z = 0 for all z, i.e. P is idempotent. [
Theorem 14.15. Given H,

1. if (Qn)nen C II(H) is orthogonal, then 3P € II(H) such that
Yl Q> Pasn— oo

2. if (En)nen C cs(H) is non-decreasing and E = J,,5; En, then
Pp, % Pp.
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Proof. 1: define P, = Z;.Lzl Q; for all n € N. Then Theorem 14.12
ensures that P, is a projection operator, as you can prove by induction.
For all z € H, for all n € N, apply Theorem 29, we have

2 2 2
lzl* = | Pz * = Y Q).
j=1
Thus Z;’ilﬂijHZ < 0o and hence for all m > n

(P = Po)a||* = Z 1Qj(|* = 0(m,n — oo).

j=n+1

Now H is complete, we can define

P:H — Hz~lim»_ Qju
"

and Lemma 14.14 ensures that P € II(H). The uniqueness of P is just
the uniqueness of strong limit.

2: Theorem 14.11 implies that Pg, — Pg, € II(H) and Pg, Pp;, =
Pg, Pg; = Pg, for all k > j. For all j < k:

(PEj+1 - PEj)(PEk+1 - PE;,)
= PEJ+1PEk+1 7PEjPEk+1 Py
_PEJ+1 _PEj_PEj+PEj

:0,

Pg, + Pg, Pg,

J+1

and
Pg, (Pg, — PE].) = Pg, — Pg, =0.

Then we have an orthogonal projection sequence as following

Pg,,Pg, — Pg,,...,Pg

j+1

— Pg,,...

Apply 1 to this sequence and we get an operator P such that Pg, — P.
Now we prove P = Pg. Suppose P = Pp for some F' € cs(H) and we
need to prove F' = FE. For all n > 1, E,, C F, Theorem 14.11 implies
that

Ve € H: ||Pg,z|| < || Pz

Then
Vo € H: ||Ppx| = li7rln\|PEan < ||Pgz|,
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i.e. F C E. On the other hand, taking = € F,,, when k > n, we have
Ey, O E,, and Pg,x = . Thus

Pp(x) = lilgnPk(:c) =z eF.

Since n € N is arbitrary, we have (J,~, £, C F. Since F is closed, we
have F D E. B O
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15 Week 15

15.1 Lecture 15-1

This lecture was given by Deyu Yu.
In this lecture, we assume that H, K are Hilbert spaces over C.
In this lecture, an isometry means an operator that satisfies

Vi fuz| = ||z

It’s not needed to be a bijection! If an operator is isometric and bijec-
tive, we will say it’s an isometric isomorphism in this lecture.

15.1.1 Normal Operator

Definition. An operator is said to be normal, if it satisfies the condi-
tions in Theorem 15.1.

Theorem 15.1. Let u € B(H). The following statements are equiva-
lent:

1. they commute: u*u = uu’*;
2. for all € H, we have |Jux| = ||u*z||, i.e. || [[ou=] || ou*.

Proof of Theorem 15.1. For all x € H:

luz|* = (uz, uz) = (z,u"uz),

and
luz|? = (s, u*z) = (z,wu’z)
since (u*)* = u. Thus |juz|| = ||u*z|| for all € H if and only if
((v'u — uu™)x,2) =0
holds for all z € H. Corollary 14.10 implies the result. O

Example 50. Consider H = K = C” and T' € B(C"). Then T is
normal if and only if the matrix My satisfies MTM%{ = M{E[MT7 ie.
M is a normal matrix.

Example 51. Let I C R be an interval (we don’t care the boundedness
of this interval) and an essentially bounded (with respect to Lebesgue
measure) map f: — C. Let Ly = Ly(I) and Loo = Loo(I). The map

u: Lo = B(L2), f — uy,

Page 170 of 198



15.1 Lecture 15-1 15 WEEK 15

is linear and bounded, where
ug: Lo — Lo, g— fg.

Clearly uy is linear and satisfies |us| < | fll,, for all f € Lo. If
0 < a < || f]|, there is a subset A C I such that co > m(A) > 0 and for
all z € A: |f(x)| > a. Then

up(xa) = f-xa

and hence

nquAMQ:1[uxAde::/Qufdnz>aﬂumn?

Therefore, ||uf|| > a for all a < || f||,, and hence ||us| = || f]|,,. Thus
u is an isometry from Lo, to a subspace of B(Ls).
Now we go back to talk about normal operators.

Claim. For all f € L, the operator induced by f, i.e. us is normal.

Proof. For all g,h € Lo:

WMM=AW@Mm=£mMm

Similarly, for f € Lo, we have
<g,ufh> :/Iguf(h)dmz/jgfﬁdm.

Thus we know u} = uy. It’s easy to see that |/ € Lo and
ufu}z = Ufo = u|f‘2,
Le. upuy = ujuy. O

In fact, for all fi, fo € Lo, wehave uy, uyp, = upuy, = uy, g, (
) |

Remark 15.1. Normal operators have the following properties.

1. An operator u is normal if and only if it’s adjoint operator is
normal, since u** = u;

2. If an operator u is normal, then for all polynomial p(t) € CJ¢],
the operator p(u) defined by (39) is also normal. ]
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Theorem 15.2. Let u € B(H) be a normal operator. For all A € C,
x € H, we have

u(z) = Ar <= u*(z) = .

Proof. From the definition of kernel: w(z) = Az if and only if = €
ker(u — Aidg). Since (u — Aidyg)* = v — Nidy and = € ker(u —
Aidg) if and only if ||(w — Aidg)z| = 0, Theorem 15.1 implies that
|(u — Aidg)z|| = 0 if and only if ||(u* — Aidg)z|| = 0. O

Definition (Characteristic Subspace). Let u € B(H) and A € C. The
subspace
E) :=ker(u — Nidg)

is called the characteristic subspace of u with respect to \.

Theorem 15.3. Let u € B(H) be a normal operator and A € C, u € C
such that A # pu. Then we have

E\1LE,.
Proof. Let z € E\ and y € E,, be given. Then
Az,y) = A, y) = (uz,y) = (z,u"y) .
And Theorem 15.2 implies that u*y = iy, and hence
Mz,y) = plz,y) = (z,y) =0. O

Corollary 15.4. Let E:= ), ¢ Ex < H. Then K := E is a Hilbert
space and we have

1. direct sum decomposition: K = @, ¢ Ex, where the direct sum

means
@EA = {(zM)rec € H By |zt e E)\,ZH:L’)‘HQ < 0o};
AeC AeC AeC

2. the operator u|,. has no eignevalues.

Proof. The second is easy: if u|, . has an eigenvector v € K+ with
respect to the eigenvalue A, then v € K (JK*, thus v = 0. That’s a
contradiction.

There is a natural map

Vi PEN— K (¢M)rec = Y 2,

AeC AeC
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where ), .oz is defined as a limit of net. The existence of limit is

guaranteed by
>l [F < oo (33)
axeC

and Question 16.1. Equation (38) should be proved by taking all finite
sets of C and apply Theorem 29. Clearly 9 is an isometric isomorphism.
O

Theorem 15.5. Let u € B(H) be a normal operator. Then we have
keru = (Imu)t, Imu = (keru)t.
This follows from the following Theorem.
Theorem 15.6. Let u € B(H, K). We have
keru = (Imu*)t, Tmu = (ker u*)=*.
Proof of Theorem 15.6. Since
z€keru < u(z)=0€ K
= (u(z),y) =0Vye K
= (o (y)y =Wy € K
= z € (Imu*)*.

Replace u by u*, then the duality (32) and «** = w implies the second
equality. O

Here we introduce some equivalent conditions of isometry.

Theorem 15.7. Let u: H — K be a bounded operator. The following
statements are equivalent.

1. it’s an isometry;
2. it satisfies: (ux,uy), = (x,y)y for all z,y € H;
3. it has a left inverse u*, i.e. u*u =idg.

Proof. 1 = 2: apply the polar identity.
2 = 3: for all x,y € H, we have

(@, y) = (uz,uy) = (z,u"uy).

This implies y = v*uy for all y € H, i.e. v*u =idgy.
3= 1: for all x € H, we have u*ux = x and then

lz)* = (@, @) = (z,u"uz) = (uz,uz) = |luz|®. O
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Remark 15.2. If dimH = n € N, then v € B(H) is an isometry
implies that w is unitary. If dim H = oo, we will see that things are
different , see Example 52. |

Definition. An operator u: H — K is called a unitary operator if
it’s a bijection with inverse u~! = u*. Here we say an operator v is an
inverse of u, if vu = idy and uv = idg.

Theorem 15.8. Let u: H — K be a bounded operator. The following
statements are equivalent.

1. the operator u is unitary;
2. it’s a surjective isometry;
3. it satisfies uu* = idg, and u*u = idy;
4. it’s an isometric isomorphism.
Proof. We will prove in the following order:

[

1

1 = 4: suppose v~ " = u* and it suffices to show that u is isometric.

For all x € H:

lell® = (e, 2) = {a, u*uz) = {uz, uz) = |uz|?
since v~! = u* implies v*uxr = x.

4 = 3: suppose u is an isometric isomorphism. Then Theorem 15.7
implies u*u = idy. Therefore, we know uu* = idx and u*u = id g since
the inverse map of a bijection is unique, and its left inverse must be
the inverse.

3 = 2: clearly u is surjective. It’s also isometric by Theorem 15.7.

2 = 1: this also follows from Theorem 15.7. 0

Example 52. Consider the space of square-summable sequence /5 and
an operator u is defined as

u: EQ — £2, (xn)neN — (07.’171,I2, .. .),

i.e. the right-shifting operator. Then w is isometric but not unitary,
since Im u # £5. [ ]
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The following example describes some unitary operators.

Example 53. Consider the measure space (I,P(I), 1) where p is the
counting measure on I. Let a = (a;);es € oo(I). There is an operator

Ug: lo(I) = ba(D),x = (zi)icr — ax = (;2;)icy-
We will prove some properties of ug.
Proposition. The following statements are equivalent.
1. the operator u,, is unitary;
2. the operator u, is isometric;
3. for all ¢ € I, we have |o;| = 1.

Proof. 1 = 2: a unitary operator must be isometric.

2 = 3: for all i € I, take the characteristic function x;; € £2(I)
and we see |a;| = 1.

3 = 2: it follows from the fact that Vj1,82 € loo(l), ug,p, =
up, ug, and the claim:

Claim. For all a € ¢, (I), the adjoint operator of u, is just ug.

Taking an arbitrary element i,j € I, we see

(uaXqiys X(5)) = @id; = (X{iy> UaX{s})

and by definition of adjoint operators

(uaxiys X(5)) = (X0} UaX{s)s ) -

We proved that <x{i},uax{j}> = <X{i}>UZX{j}7 > Now the density of
span{xy;: ¢ € I} implies that

for all f, g € ¢3(I), and hence u}, = ug. O

15.1.2 Partial Isometric Operator

Definition. Let u € B(H, K). The space (keru)' is called the sup-
port subspace of u, denoted by supp u.

Remark 15.3. This is a generalization of the support of a function
X ->C

supp f = {x € X | f(x) # 0},

where X is a topological space.
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Definition. An operator u € B(H, K) is called a partial isometric

operator, if v := u|Suppu is isometric.

Remark 15.4. We have the following properties.

1. for all w € B(H, K): the support subspace of u* is suppu* =

(ker u*)+ = Tmu;

2. for all w € B(H,K): v := ul is injective, since kerv =

ker u N supp u = {0};

supp u

3. If u be a partial isometric operator, then the operator v = u|
is an isometric isomorphism from supp u to supp u*;

supp u

Proof of 3. It suffices to show that Imu = Imwv. For y € Imu,
there is some z € H such that u(z) = y. Then the projection of x
upon supp u, denoted by Zsupp » satisfies v(Tsuppu) = U(Tsuppw) = ().
Thus Imv = Imu. Then v is an isometric isomorphism from supp u to
Im u, which implies that Imw is closed and hence Imu = suppu*. O

Theorem 15.9. Let u be a partially isometric operator. Then
1. the composition is u*u = Psupp u}

:suppu — Imu is

2. the inverse of the unitary operator ulg, .,

U ¢ IMu — supp u;
3. the adjoint operator u* is a partially isometric operator.

Exercise 15.1. Let H be a Hilbert space over C. Then ||T| = 0 if
and only if (Tz,z) = 0 holds for all z € H.

Exercise 15.2. Let T € B(H), prove that: A+ A* =0 if and only if
Re (T'z,z) = 0 holds for all x € H.

Hint: 14.10.

15.1.3 Look Back

Here we overview what we have learnt about Hilbert spaces.

First, we studied “inner product space’”. Cauchy-Schwarz in-
equality ensures that an inner product induces a norm and hence we
can consider the dual space of an inner product space. Theorem 12.4
is of great importance and you should also know the version for a
sesquilinear functional. Parallelogram Law was used to prove the
projection theorem. Theorem 12.6 was used to prove that the norm of
H* is induced by an inner product (Theorem 12.4 was also used).
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Secondly, a Hilbert space is an inner product space that is com-
plete. Things about orthogonality were discussed, such as Bessel’s
Inequality, Parseval’s Identity and Schmidt orthogonalization progress.
We defined the projection operator for a closed subspace of a Hilbert
space. Theorem 13.11 implies the decomposition: H = E® E+ where
E — H is closed.

Finally, Riesz Representation Theorem came and so was ad-
joint operator.

15.2 Lecture 15-2

Final exam doesn’t need this lecture. Let H be a Hilbert space and X
be a Banach space, in this lecture.

15.2.1 Introduction to Spectrum Theory

Given a Banach space A, there is some operations: addition +, scalar-
multiplication - and norm || ||.

Example 54. Consider the Banach space A = L,(f2), where we have
a measure space (2,3, ) and p € [1, 00].

What if we consider more operations on A? Consider a map, called
the multiplication on A, defined as follows:

T AXA= A (x,y) = x -y,
which is bilinear and associative, i.e. for all z,y,z € A and a € K:

(@t+y) 2=z 24y 2
z-(z+y)=z-x+2z-y,
alz-y) = (ax) - y=x-(ay),
(@-y)-z=x-(y 2)
We also write -y = zy for simplicity. It’s natural to ask the multiplica-
tion is continuous (for more good results, we want it to be contractive),
ie.
Va,y € A lz-yll < [lz]lllyll.

The definition of a unity is natural. That’s how we define an algebra.

Definition (Banach Algebra). A Banach Algebra is a Banach space
A with a continuous multiplication. For simplicity, a Banach algebra
is also called an algebra.
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Definition (Unity). Let A be an algebra. If there is an element 1 4 € A
such that 142z = 14 = x holds for all x € A, then 1 4 is called the
unity of A. An algebra that has a unity is called a unital algebra.

Remark 15.5. Clearly, if an algebra has a unity, then it’s unique.

Definition. An algebra is said to be commutative, if for all z,y € A:
Ty = yx.

What if there is one more map on this algebra?

Definition (Involution). Let A be an algebra. An involution on A
is a map
x: Ao A x—ax*

that is conjugate-linear and satisfies
* *, % * 2k
Va,y € A: (zy)* =y a2, ||zz*|| = ||z]|°, 2™ = =,
where z** := (z*)*. For x € A, x* is also called the adjoint to .

Remark 15.6. This is a generalization of adjoint in Hilbert spaces.
We can define self-adjoint element in A as what we did for Hilbert
spaces.

Definition. An algebra with an involution is called a C*-algebra.
Example 55. The Banach space B(H) is a C*-algebra.

This follows from the following lemma.
Lemma 15.10. For all T € B(H), we have ||T||> = |T*T|| = | TT*|.
Proof. We know ||T*T|| < || T|||T*| = ||T||°. For all z € H, we have

2 * * 2
[Tx|” = (T2, Tx) = (x, T"Tx) < [ T*T|||=|".

Then we know |T||> < |T*T||. The another equality follows from
(T*T)* =T*T and ||T| = || T*]. O

Consider a Banach space X, then there is an algebra A = B(X).
Suppose T € A is invertible, then Theorem 7.4 implies that T~! € A.
Thus we define:

Definition. An element x € A is said to be invertible, if there is an
element y € A such that

zy =yxr = 14.

And such y is called the inverse of x, denoted by 1.
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Remark 15.7. Things shoul be noticed:
1. the inverse of x is unique;
2. ify=2""1, then z =y~ 1;

3. for a square matrix A € K"*" if there is a square matrix B such
that AB = I, then we have BA = I and hence B = A~!. But in
a unital algebra, it’s possible xy = 1 4 while yx # 1 4.

Example 56. Consider X = {5, the unital algebra A = B({3). Con-
sider T', S € A, defined by

T: 62 — £2a (xn)neN = (xn+1)n€Na
S': 62 — EQ, (xn)neN — (0,1’1,1’2, .. )

Then T o S = 1 4 while it’s impossible that SoT =1 4.

From now on, we assume all algebras mentioned are unital. The
following proposition shows some relations in a C'*-algebra.

Proposition 15.11. Let A be a C*-algebra and z,y € A, then
1. the umity is self-adjont, i.e. 1% = 1 4;
2. if z is invertible, then (z71)~! = x;
3. if both of z,y are invertible then so is zy and (zy)~! =y~ 1z~

4. if x is invertible, then so is z* and (2*)~! = (z71)*.

Proof. We prove the first and the last only, since the second and the
third follow from the uniqueness of inverse. For the first, apply the
uniqueness of 14 and

Vee A: Igz =2l 4 =z,

which implies
Vee A: z*1% = 1%z" = z*.

We're done, since for all x € A, we have x = (z*)*. The last follows
from

.'L‘*(.'L’il)* = (1‘71(5)* = ]]_Z = II'.A?

(z7 )2 = (px ) = 1% = 14.

and the uniqueness of inverse. O

Page 179 of 198



15.2 Lecture 15-2 15 WEEK 15

We can define the polynomial for an element in a unital algebra .A.

Example 57. Let A be an algebra and z € A. For a complex polyno-
mial p(t) = > p_, axt” € Cl[t], define

pla) = apa®, (39)
k=0

where 20 := 1 4. Then p(z) € A.

Similarly, we can define the power series for an element in a unital
algebra A.

Example 58. Let (a,,)n>0 be a complex sequence and = € A, where A
is an algebra. We show that ) - an,2z™ is meaningful in some sense.
For convenience, consider a,, = 1/n!(Vn > 0).

Claim. There is a unique y € A such that
T
D =Y
n!
n>0

in the meaning that y = lim,, P,,(z), where P,(¢) € C[t] is defined as

E

=0

Proof. Since A is a Banach space, we can apply Proposition 3.1. Tt
suffices to show that (P(z)y)nen is Cauchy. For all m >n > 1:

m

Z P,(x)

k=n-+1

| P () — Po(2)|| =

IA
N
=~
=
s

since for all y € R, >° -, y"/n! converges (ratio test works). O

Theorem 15.12. Let X be a Banach space, A := B(X) and z € A
satisfying ||z|| < 1. Then 14 — z is invertible.
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Aim. We want to find y € A such that yz = zy = 1 4. Recall that,
for z € R such that z < 1, we have

1—-z)"'= Zx"

n>0

Proof. Clearly ) ., x" converges in A. Suppose A D (an)nen — a €
Aand b€ A, then

VYn € N: ||ba,, — bal| < [|b] - ||an — al|
implies (bay,)nen — ba. Thus

N
(]lA—x)Zx :(]lA—x)hJ{]nT;)x

n>0

N
= h]{fn(]lAf:c)T;)x
— 1 _ L N+1
= hg[n(]lA T )
— 14

The another equality > -, 2" (14 —2) = 14 can be checked similarly
and we’re done. B O

Question 15.1. Let A € C and T' € B(X), where X is a Banach space.
When will \I — T be invertible? Here I = 1g(x.

Partial Answer. A sufficient condition is: [A| > ||T||. If |A] > || T >
0, then A™! € C and A\ — T is invertible if and only I — A71T is
invertible. Then Theorem 15.12 implies:

A =T)"t =X (TN

n>0
And we can also show that
[[Ey Ay e p——
Al =177
If T is an invertible operator, then A = 0 works. O
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15.2.2 Recall Linear Algebra

We studied the eigenvalue of matrices: let A be a n xn complex matrix,
a complex number is called an eigenvalue of A, if there is a (column)
vector x € C™ such that

(M — Az =0,

where I is the identity matrix. Equivalently, ker(Al — A) # {0}. In
linear algebra, a square matrix (also viewed as a linear transformation)
is invertible if and only if it has the trivial kernel.

Definition. Let X be a Banach space and T € B(X). If A\ — T is not
invertible, then A is said to be a spectrum point of 7. The set of all
spectrum points of T" is denoted by o(T'), called the resolvent set of T.

Definition. Let X be a Banach space and T € B(X). If \I — T is
invertible, then A is said to be a regular point of 7. The set of all
regular points of T is denoted by p(T'), called the spectrum set of T'.

Clearly we have C = o(T) | | p(T).

Question 15.2. Let T € B(X) and r > 0 satisfy that o(T) C {z €
C: |z| < r}. Can we give an upper bound of r?

Question 15.1 shows that r < ||T|.
Example 59. Consider the shift operator
T: 62 — é?a (mn)TLEN = (07561,1‘2, .. )

Clearly, |T']| =1 and hence o(T) C {z € C: |z| < 1}.

15.2.3 Classification of Spectrum and so on

For an algebra A = B(X), where X is a Banach space, the spectrum
of T e Ais

o(T) ={X\ € C: A\I — T is not invertible}.
Let I :=14. If A € 0(T), then there are 3 cases:
Case 1. the operator AI—T has a non-trivial kernel, i.e. ker(AI—T) # {0}

Case 2. the operator A\I — T has a trivial kernel but it’s image, being
smaller than X, is dense in X, i.e.

ker(AM — T) = {0}, Tm(M — T) = X,Im(AM — T) # X.
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Case 3. the operator Al —T has a trivial kernel but it’s image is not even
dense in X, i.e.

ker(AIl = T) = {0}, Im(A\] —T) # X.

Then we know

o(T) = ap(T) | Joe(T) | |on(T).

Remark 15.8. A complex number A € C is a spectrum of T, if and
only if the following chain

0 X A-T

fails to be exact.

Question 15.3. Let T' € B(X) be a compact operator. Can we say
about 0 € o(T)7

Answer and Proof. If dim X = oo, it holds. Suppose dim X = oo
and 0 ¢ o(T), i.e. T is invertible. Then T—! € B(X). Since T € C(X)
and C(X) is an ideal of B(X), we find

I=TT'eC(X).

The identity operator I is compact if and only if I(Bx) = Bx is com-
pact, equivalently, dim X < oo (see Theorem 6.8). Thus, it’s sure that
0 € o(T) when dim(X) = occ.

If dim X < oo, then all operators are bounded and hence of finite-
rank. Thus all operators are compact. But clearly the identity operator
I is invertible and hence 0 ¢ o (). O

Special operators have special spectrum:

Theorem 15.13. Let H be a Hilbert space and T' € B(H).
1. if T =T, then o(T) CR;
2. if T >0, then o(T) C [0, c0).

Definition. An operator T' € B(H) is said to be positive-semidefinite,
denoted by T > 0, if for all z € H, we have (Tx,z) € [0, 00).

Remark 15.9. A positive-semidefinite operator is self-adjoint.
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16 Week 16

16.1 Lecture 16-1

16.1.1 Exercise Course: Question Part

Question 16.1. Let H be a Hilbert space and (e, )nen be a sequence
of orthogonal vector, i.e. (e,,e,) = 0 when n # m. Prove that the
following statements are equivalent:

L. the sequence (3_7_; €j)nen converges;

2. the sequence (Z?Zl ej)nen converges weakly;

3. the sum Zn>1\|en||2 is finite.

Question 16.2. Let X be a Banach space and T € £(X). Prove that:
T € B(X) if and only if for all z € X: (2,)neny — « implies that
(Txp)neny — T

Question 16.3. Let X be a reflexive linear normed space. Prove that:
for all f € X**, (fu)nen C X** such that (fi)nen = f, we have

(fn)nEN - f

Remark 16.1. For a linear normed space X with a pre-dual space X,
we know that (f,)nen — f implies (fn)nen — f-

Question 16.4. Let X be a linear normed space X with a closed
subspace M — X. Show that: if (z,)neny € M and zg € X satisfy
that (2n)neny — ), then g € M.

Question 16.5. Let X be a reflexive linear normed space. Prove that:
if (xn)neny C X satisfies that Vf € X*:

im|f(zm) — f(zn)] = 0,
m,n
then there is some = € X such that (z,)pen — .

16.1.2 Exercise Course: Solution Part

Proof of Question 16.1. Let (z)nen = (Z?Zl €j)nen. We will
prove in the following order

1 2 3 1.

1 = 2: suppose (zp)neny — « € H. For all f € H*, we have

[f(@n) = f(@)] < (I f[lzn — 2] = O(n = oo).
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Thus (z,)neny — 2.

2 = 3: weak convergence implies that (2, )nen is weakly bounded,
and then Exercise 11.1 implies that (z,)nen is bounded. Suppose M
is a bound of (z,,)nen. Then for all n € N: Theorem 29 implies that

n

2 2
D lesll® = llall* < M2,
j=1

therefore

2 2
g llenll” = sup||z,||” < M? < 0.
n>1 neN

3 = 1: it suffices to show that (x,),en is a Cauchy sequence, since
H is complete. For all n > m:

n
lzn —@m|® = > llegll* = 0(n — o).
Jj=m+1

Therefore, (z,)nen is a Cauchy sequence and hence (x,,)en converges.
O

Proof of Question 16.2. Necessity: for all (x,)peny € and z € X
such that (z,)nen — x, we have

lim £ (T,) = (T f)(2,) = (T° f)(x) = f(T),

since T*f € X* and (z,)neny — @, where T*: X* — X*, f — foT is
the conjugate operator of T
Sufficiency (method 1): consider proof by contradiction. If 7" is not

bounded, then

sup [T = oo,

llzll=1
and we can pick a sequence (Z,)nen such that Vn € N, ||z,|| = 1 and
T2z, > n.

Claim. The sequence (T'y,)nen can’t converge to 0 weakly.

To see the claim, if suffices to see that: weak convergence im-
plies that (Ty,)nen is weakly bounded, and hence bounded, which
is a contradiction. Now consider the sequence (y,)nen, where y, =
(Vn/ Tz ||)zn, then we have ||y, || < 1/v/n — 0(n — o0) and ||Ty, || =
Vn = oo(n — o0). Now we have a sequence (yn)nen such that
(Yn)nen — 0 and (Typ)nen 7 0, contradiction with the assumption.

Sufficiency (method 2): consider Closed Graph Theorem, see
Theorem 8.8. It suffices to show that the graph G(T') is closed in X x X,
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ie. V(zn,Txy)nen such that (z,)ney = ¢ € X, (TTp)neny — y € X
then we have y = Tz. Suppose (z,)ney = & € X, (TZn)ney = y € X,
then (2, )neny — 2 and (T2, )neny — y. And the assumption means that
(Txp)neny — Tx. The uniqueness of weak limit implies y = Tx. O

Remark 16.2. Both proofs of sufficiency need the Banach Steinhaus
Theorem.

Proof of Question 16.3. Suppose that (f,)nen € X**, f € X**
such that (f)neny = f, ie. Vo € X*: f,(z) = f(z). Thus: Vo € X*:
Z(fn) — &(f), where & = tx+(z) and tx- is the natural embedding of
X*. Then (fn)neny — f follows from the following claim:

Claim. For all F' € X***, there is some x € X* such that F' = ¢ x-(x).

In other words, the natural embedding ¢x« is also an isometry, i.e.
X* is also reflexive. That’s true, since

Lx O L)_(l =idxs+ A L)_(l orx =idy
implies that (by the property of the functor x)
Vo (L) =idxs A (L) otk = idxees

And Theorem 11.1 implies that ||k || = ||(t%)~*|| = 1, which means
% is an isometry. Then that X* is reflexive follows from the following
claim:

Claim. We have
L} Olx* = idx*,

which implies L)_(l* = 1% (the left inverse of an invertible map is the
inverse).

Given arbitrary f € X* and z € X. On the one hand
v oux-(f) =1k (f) = foux € X7,
where X*** 3 f: X** K, A A(f). Then
[tk oux+(N)](2) = foux(x) = f(&) = 2(f) = f(x).

On the other hand
Lidx~ ()] (x) = f(2).

Then we proved 1% ovx+(f) =idx-(f) since x € X is arbitrary. There-
fore, we proved (% o tx+ = idx- since f € X* is arbitrary. O
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Proof of Question 16.4. See Exercise 9.4. If 9 ¢ M, we have
d(zg, M) > 0 since M is closed and there is a linear functional such that
f(xo) # 0 while f|,, = 0 and hence it’s impossible that (x,)nen — o,
which is a contradiction. 0

Remark 16.3. To prove Exercise 9.4, consider the functional

fo: span ({xo} UM) - K
defined by
fo(.%‘()) = d(on,M) A f()|1u =0.
Then apply Theorem 9.2. |

Proof of Question 16.5. Given a sequence (z,,)ncn satisfies the prop-
erty stated in this Question, consider the natural embedding ¢: X —
X**. Then for all f € X*:

|z, (f) — Zn(f)] = 0.

m,n

Since X is a reflexive space, we know X is a Banach space. Theorem 8.3
implies that (&, )nen 2y & for some & € X**. Clearly: in the space X**,
strong convergence is equivalent to weak star convergence, and hence
we proved (2, )nen — & for some x € X. Question 16.3 implies that it
suffices to show (2, )nen — 2 for some z € X, and
(Tp)neny = ¢ = Vfe X*: f(z,) — f(z)
— VfeX": z,(f) = z(f)
— (in)neN =3 ]

16.2  Lecture 16-2
16.2.1 Exercise Course: Question Part

Question 16.6. Let H be a Hilbert space and (z,,),en be a sequence
of orthogonal vector, i.e. (z,%m,) = 0 when n # m. Prove that the
following statements are equivalent:

1. the sequence (Z?zl Zj)neN CONVerges;

2. the sequence (>

j=1{Zj,Y))nen converges in K;

3. the sum Y, . ||z, |* is finite.

Question 16.7. Give an example that a sequence is weakly* conver-
gent but not weakly convergent.
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Question 16.8. Let 1 < p < 0o and o = (a, )nen be a sequence in K.
If Vo € £y, we have 3 | xpay, exists, show that o € £,.

Question 16.9. Given a € ¢, and 1 < p < co. Define
To: by =,z — o2
Find || T,

Question 16.10. Let r,p, g be positive real numbers such that 1/r =
1/p+1/q and (Q, X, 1) be a measure space. Let o € L, and defined an
operator

To: Lp — Lp,x— - .

Show that || T, = [,

16.2.2 Exercise Course: Solution Part

Proof of Question 16.6. We have proved 1 <= 3. It suffices to
prove
1 2 3.

Define a sequence (s, )nen by s, 1= Z?:l z; for all n € N.

First, 1 <= 2. Let o be the Riesz map. Suppose (s,)nen
converges, then

n

(Z <xja Y))nen = ({SnsY))nen

j=1

converges, since ( ,y) = wf is a continuous functional.

Secondly, 2 = 3. The convergence implies that (s, )nen is weakly
bounded. Then the proof of Question 16.1, 2 = 3 works.

Another method for 2 = 3. This idea is similar to Question 3
Define a functional sequence (f,)nen as follows: for all n € N,

fo: H o Kax— (z,8,).

Then f, = ¢! and hence |[foll = [[snll = /30—y ll;|%, by Theo-
rem 29. The sequence (Z?zl (xj,Y))nen converges in K, and hence

is bounded, i.e. (fn)nen is bounded pointwisely. Thus Theorem 7.6
ensures that (fy)nen is uniformly bounded, i.e.

1/2

2

oo > supllfall = (Y lleal®) O
neN n>1

Remark 16.4. Banach-Steinhaus Theorem 7.6 is important for 2 =
3. Both of 2 methods need it. |
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Proof of Question 16.7. See Example 29. O
Proof of Question 16.8. See this. O

Proof of Question 16.9. Clearly T,, € £(¢,), and Lemma 16.1 im-
plies that ||T,|| < |la||. Consider (e,)nen C £p, and we can see that

1 Ta(en)ll = [am]
for all n € N. Since |le, ||, = 1, we have
Vn € N: || Ta|l > |,
e, |Tall > fall... -

Proof of Question 16.10. The boundedness of T, is implied by the
following lemma.

Lemma 16.1. Given a measure space (2,3, u), and p,q,r € (0, 00]
such that 1/r =1/p+1/q. Forall f € L, and g € L,, we have fg € L,
and

1fgll, < 171, llgll-

The inequality comes to be a equality if and only if |f|” = |g|? almost
everywhere.

Lemma 16.1 can be proved by applying Hélder’s inequality to |f|"
and |g|".
Consider [laf|, > 0, i.e. a # 0 € L,. Notice the condition for

equality, and we consider the function & := sign(c)|a|?? € L,, then
Ta(d) — |a|;D/Q+1.

Thus
ITal@)l, = llafl2",

as you should verify. Furthermore, ||&| = Ha||g/ P Therefore

1Tl = [ Ta(@)l,./ e, = llel,- O
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A Hamel Basis

Definition (Partial order, Partially ordered set). A binary relation on
X is called an partial order on X if it satisfies

1. 2<yANy<z = <z
2. Vee X x < u;
3. z<yhNy<z = x=1y.
A set with an order is called an partially ordered set.

Remark A.1. In fact, an order on X can be defined as a binary
relation, i.e. a subset of X x X. But we don’t care this now.

Definition (Total order, Totally ordered set). An order is said to be
linear, if Vo, y € X(x <y Vy < x). A set with a linear order is called
a totally ordered set.

Definition (Bound, Bounded set, Maximal element). Let X be an
ordered set and Y C X. An element z € X is called a bound for Y if
y < z(Vy € Y) and at the same time Y is called a bounded set. An
element m € X is called a maximal element if Vy € X—(m < y).

Axiom (Zorn’s lemma). Let X be an ordered set with the following
property: every totally ordered subset of X (in the sense of the order
induced by the initial order of X) is bounded. Then there is at least
one maximal element in X.

This is equivalent to the Axiom of Choice, which cannot be proved
from the other axioms of set theory. To define base, we need the notion
of linear independence.

Definition (Linearly Independent, Hamel Base). Let V' be a linear
space over K. A system of vectors of V' is called linearly independent
if every finite subsystem of this system is linearly independent (i.e.
every finite combination gives 0 if and only if all coefficients are 0).

A family of vectors {e; € V : i € I} is called a Hamel basis of
V, if Vo € V,x # 0 can be uniquely represented as a (finite) linear
combination of vectors in {e; : i € I}.

Theorem A.1 (Existence of Hamel base). Each linear space V' (over
an arbitrary field) has a Hamel Base.

Proof. To use Zorn’s lemma, we need to construct an ordered set
whose maximal element can be a Hamel basis of V. Thus, consider

D :={X CV:X is linearly independent}
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with the order: VA, B € D: A< B <= A C B. Given an arbitrary
totally ordered set A C D, we have a bound for A, just |JA. To
show that |JA € D, taking arbitrary e, es,...,e, € |JA such that
ej € X; € Aforall j =1,2,...,n. Since A is totally ordered, we can
suppose X1 € Xp € --- C X,, and hence e; € X,,(Vj = 1,2,...,n).
Since X,, € A C D, X,, is linear independent and hence ey, es,..., e,
is linearly independent. Therefore, | J.A € D. Now apply Zorn’s lemma
and we know there is a maximal element B in D. And B is a Hamel
basis. To show this, it suffices to prove that every element in V lies
in span(B). If there is an element v € V such that v ¢ span(B), i.e.
B U {v} is linearly independent. This is impossible by the definition of
the maximal element. O

In fact, we can define Hamel bases for an arbitrary linear space over
an arbitrary field such as Q and IF,, for some prime p.

Here I explain why we can view a vector space over C as a vector
space over R.

Proposition A.2. Let V be a vector space over C, then there is a real
vector space W and a R-linear bijection p: V — W.

Proof. Let {v,}acr be a base for V. Consider the set W :=V x iV,
where iV = {iv : v € V} is equipped with the natural real linear
structure. Now I define a linear structure on W such that W is a
R-linear space. Then, define the mapping ¢: V — W by

Vo € I,Vz € C: p(2va) = (Re(z)vq, Im(2)v,).

Extend ¢ to V keeping R-linear. Then ¢|"™®) is what we wanted. [
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B Banach Functor

This appendix comes from [4].
Recall the exercise:

Exercise B.1. If Y is a Banach space and X is a linear normed space,
then B(X,Y) is a Banach space. Especially, X* is a Banach space.

Proof. Let (up)nen € B(X,Y) be a Cauchy sequence. Thus

}}ggIIun - Um”B(X,Y) =0.

Taking an arbitrary x € X, we have
[une — umally < [(un = um)zlly
< lun = um |l gx vy 12l x (40)
— 0(m,n — 00).

Therefore, (u,z)nen is a Cauchy sequence in Y. Since Y is a Banach
space, we know (u,2)nen converges to some point in Y. Thus we can
define a map

u: X =Y,z lirlbnun(a:).

And now we prove that (u,)neny — w in B(X,Y). This proof is simi-
lar to the proof of “uniform limit of a continuous function sequence is
continuous”, see this proof.

By definition, Ve > 03N € N such that Ym,n > N we have

[tn — umllpx,y) <&
which implies
[un® — umzlly = [[(un —um)zlly <ellz], Ve e X.
Let m — oo, by the continuity of || ||y, we have
[(un —w)a|| = [lune — uzlly <ellz,ve € X.
Therefore, ||u, — u| < € holds for all n > N. That is (un)neny = u. O
Now we can define

Definition. The contravariant functor

x: Nor — Ban,

Ob(Nor) > X +— X™, (41)
Mor(Nor) 3 ¢: X1 — Xo — " Xj — X7.

Where ¢*: X5 — X7, f— foe.

Page 192 of 198



B BANACH FUNCTOR

Remark B.1. Banach Functor is a special case of the functor B( ,Y)
where Y is a Banach space, defined as

B(,Y): Nor — Ban,
Ob(Nor) 3 X ——— B(X,Y),
Mor(Nor) 3 ¢: Xy = Xy +— B(p,Y): B(X1,Y) — B(X2,Y).
Here B(p,Y): B(X1,Y) = B(X2,Y), f — foop.
Banach functor is surely a functor.

Proof. It suffices to prove that (idx)* = idx« and (po))* = ¢* o p*.
To prove two maps are the same, we should prove that they coincide
at every point.

e Given X € Ob(Nor), we have
Vie X" : (1dx)*(f) = foidx = f =idx~(f).

Thus (idx)* = idx~, since idx~ is uniquely determined by this
property.

e Given X; <& X, & X3. Notice that dom((po)*) = X7 and for
any f € X7, we have

This means (¢ o ¥)* = 1* o p*.

Now, What is needed to check is just * € B(X3, X7), and this is
true since Vf € X3

||90*(f)||Xf =|fo <P||B(X1,K) < ||f||X;||SD||B(X1,X2)7

hence ||$0*||B(X;,X1*) < ||80||B(X1,X2)- O

If we restrict x: Nor — Ban to the full subcategory Ban, and call it
Banach adjointness functor, then we can consider the composition
of x: Ban — Ban, i.e. *x: Ban — Ban, which is covariant. On object,
X** is the usual second dual space; on morphism, T** is the usual
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second dual operator. This is the main topic about “the dual theory of
Banach space”.
Similarly we can define a covariant functor

B(K, ): Ban — Ban
X — B(K, X),
(f: X=Y) — (BK, f): BK,X)— BXK,Y)),

where
B(K, f): B(K,X) = B(K,Y),¢ + f o).

Proposition B.1. Show that B(K, ) is naturally equivalent to idgan,
the identity functor of Ban.

Proof. Define the natural transformation 8 = {fx: X € Ob(Ban)} as
follows
9)(1 B(KuX) - X?SD = 90(1)7

where 1 is just the multiplicative identity of K. We check that 0y is a

e injection: kerfx = {0}. From definition: 0x () = 0 if and only
if (1) = 0, while v € B(K, X) so ¢(1) = 0 if and only if ¢ = 0;

e surjection: Imfx = X. For arbitrary z € X, define p,: K —
X,z — zx . Then ||g.| = ||z| and 0x () = = as we want.
Furthermore, we know that 6x keeps norms.

Thus 0x is an isomorphism for each X € Ob(Ban).
Then we check that the following diagram commutes

B(K,X) —— idgan(X) =——

B(K,f)l idBan f)l l
Y

B(K,Y) —— idgan(Y)

Given ¢ € B(X,C), on the one hand

(fobx)(p) = f(Ox () = f(p(1)).
On the other hand

(6 © B(£,K)) () = 0y ((B£.K))(¢)) = v (f o) = (F o 0)(1).

We're done since f(p(1)) = (f o p)(1). O
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Remark B.2. The definition of fx is natural since this is the simplest
element of B(B(K, X), X).

Now we explain the reason of name “Natural Embedding”, whose
definition can be found here. To view this better, we should view the
“Biduality” as a functor, which can be defined as a composition of a
functor.

Definition. Let C1,Cs,C3 be three categories and F': C - D,G: D —
& are two functors. The composition functor of F' and G, denoted by
G o F is defined as follows.

GoF:C; — (s,
Ob(C1) 3 A — G(F(A)),
Mor(C1) 3 ¢: X =Y = G(F(p)): G(F(X)) = G(F(Y)).

Thus the bidual functor *x is just the composition of *: Nor — Ban
and itself (more precisely, ** := % ot 0% , where ¢: Ban — Nor is the
identity functor that keeps everything the same). Here is a easy exercise
that ensures something like (X**)* = (X*)**.

Exercise B.2. Show that the composition of functor is associative.

Now we explain the name of “Natural Embedding”. For convenience,
here we view *x as a functor from Nor to itself.

Proposition B.2. Consider the category Nor and two functors

xx: Nor — Nor,
id: Nor — Nor,

where id is idner for short. Then the family of natural embedding
{tx: X - X" 2z &| X € Ob(Nor)}
is a natural transformation from id to *x.

Proof. See Corollary 11.2. O
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C Uniqueness of Completion

To ensure the uniqueness of completion, we need to look at the defini-
tion of completion.

Definition. A completion of a linear normed space is a pair ()A( ,t) such
that X is a Banach space and ¢: X — X keeps norms with a dense
image.

Theorem C.1 (Uniqueness of completion). The completion of a linear
normed space X is unique up to an unique isometry (that conincides
with the two inclusions). That is, if X ,Y with isometric inclusion
map ¢, respectively are completions of X, then the following diagram
commutes

Proof. Consider the corestriction of ¢, that is g := L\L(X). Clearly ¢q

is an isometry from X to ¢(X) . Now we define a
map o by the following diagram (i.e. @g := ¢/ o (19)™1)

X
(m)y \
(X) —2 v

Now ¢ is linear and keeps norm. Since ¢(X) is dense in X , Y is

complete and g is continuous (¢ keeps norm and hence is continuous),

we can extend g to a continuous map @: XY (see this exercise, to

prove which, it suffices to displace Xg, K with ¢(X),Y respectively).
To show that ¢ is an isometry, we should show that:

1. ¢ is linear;
2. ¢ keeps norm.
3. ( is surjective;

First, ¢ is linear. We have proved this in the exercise.

Page 196 of 198



C UNIQUENESS OF COMPLETION

Second, ¢ keeps norm. ¢(X) is dense in X, so Va € X, I(@n)nen C
t(X) such that (2,)neny — x. Then

]l =

limz,,
n

— lim|z, |
n

lim||¢o () |
n

tim|li(z,)|

liyr]‘nga(xn)
= lle(@)ll

Thirdly, ¢ is surjective. Yy € Y, by the density of t/(X), I(yn)nen C
//(X) such that (y,)nen — y. And Vn € N, let 2, := ¢y ' (y,) then
(n)neny C (X)) C X is well-defined and Cauchy ( since (Yn)nen is
Cauchy and ¢ keeps norm). Now

y =limy, =limp(z,) = p(limz,) = ¢(z).

The last equality used the completeness of X. Therefore, ¢ is surjective.
Above all, ¢ is an isometry. If there is another isometry ¢: X — Y
such that the diagram commutes, then <p|L(X) = ¢|L(X) = ¢g. Then ¢

and ¢ conincide on a dense subset of X and hence = o. O

In fact, a completion of a linear normed space is a final object of
some category and hence is unique up to a unique isomorphism, see [4,
Theorem 2.6.1].
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