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Here are some conventions:

• R,Q,C are fields learnt in Mathematical Analysis. The mappings
Re, Im: C → R are taking real part and imaginary part of a
complex number respectively. K is one of R and C, usually used
to state different cases conveniently. N is the set of positive
integers. For all n ∈ N, the set {k ∈ N : 1 ≤ k ≤ n} is denoted by
[n].

• Kn×n means the matrix space containing all n× n matrices.

• ∀,∃ and ∃! means “for all, there is and there is unique” respec-
tively.

• Formula A := B means A is defined as B. For example,

C := R[t]⧸(1 + t2)

means C is defined as a quotient ring.

• For each set A, the identity map is idA : A→ A, a 7→ a. It’s also
used in the case that A ⊆ X, then idA : A→ X, a 7→ a.

• For a mapping f : A → B, we write A = dom(f), B = cod(f).
For two arbitrary sets X,Y , the set YX is the set containing all
mappings from X to Y .

• For a, b ∈ R, define minimum function

∧ : R× R→ R, (a, b) 7→ a+ b− |a− b|
2

,

and maximum function

∨ : R× R→ R, (a, b) 7→ a+ b+ |a− b|
2

.

• Subtraction of sets A,B is A \ B := {x ∈ A : x ̸∈ B}. We write
the union of A and B by A

⊔
B if A ∩B = ∅.

• For a set A, P(A) means the power set of A.
For a set A, and its subset B, the mapping χB is defined by

χB : A→ {0, 1}, x 7→

{
1 x ∈ B;

0 x /∈ B.

There is a bijection between P(A) and A2, where 2 is an arbitrary
set with exactly 2 elements.
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• A sequence in X is a map x : N → X,n 7→ xn (in other words,
x ∈ NX), and x : N→ X is usually denoted as (xn)n∈N ⊆ X.
If X is a topological space, the definition of limit is just the defi-
nition of a net in a topological space.
Furthermore, limit of a double indexed sequence (xm,n)m,n∈N is
defined as the limit for the product directed set N× N.

• For proposition p, q, we use p∧ q to mean the proposition “p and
q”, ∧ has the truth table as follows.

p q p ∧ q
1 1 1
1 0 0
0 1 0
0 0 0

Similarly, we define p ∨ q.

• Addition of mappings whose codomains are the same linear space
is defined pointwisely. That is: let f, g : X → V be given, we
define the function

f + g : X → V, x 7→ f(x) + g(x).

• For f : X → K and k ∈ K, we define that function f + k by
x 7→ f(x) + k. That is, respect k as a constant function x 7→ k.

• limn means limn→∞ for short.

• Given a linear map f : X → Y where X,Y are linear spaces.
Then

ker f := f−1(0) = {x ∈ X : f(x) = 0}.

• We say a diagram commutes, if all the morphisms (and their
possible compositions) with the same domain and same codomain
coincide.

• If an arrow is unique/injective/surjective, we denote the arrow by
99K/ ↪→ / ↠ respectively.

• The Kronecker symbol on a set is defined as

δ : X ×X → {0, 1}, (x, y) 7→ δxy :=

{
1, x = y;

0, x ̸= y.

And δxy is also denoted by δx,y.
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• The sign function is defined as follows

sign: K→ K, z 7→

{
0, z = 0;

z/|z|, z ̸= 0.

• The rounding down function is

⌊ ⌋ : R→ Z : x 7→ sup{k ∈ Z : k ≤ x}.

• Let (Ω,F) be a measurable space. We say a function f : Ω → R
is measurable, if the preimage of Borel subsets of K under f is F-
measurable. That is, assume K is equipped with Borel σ-algebra.

• The symbol means that a proof or solution ends. The symbol
■ means that an example or a remark ends (I wouldn’t use this
everytime).

• Somewhere you can see color different, that is reminding you to
think about what here should be. (Just like 1 + 1 = 2 .)

Page 3 of 198



CONTENTS CONTENTS

Contents
0 Introduction 7

1 Week 1 9
1.1 Lecture 1-1 . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Linear Normed Spaces . . . . . . . . . . . . . . . 9
1.2 Lecture 1-2 . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Lebesgue integrable function spaces . . . . . . . 13

2 Week 2 18
2.1 Lecture 2-1 . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Quotient Spaces . . . . . . . . . . . . . . . . . . 18
2.2 Lecture 2-2 . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Metric Spaces . . . . . . . . . . . . . . . . . . . . 22

3 Week 3 28
3.1 Lecture 3-1 . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Banach Space . . . . . . . . . . . . . . . . . . . . 29
3.2 Lecture 3-2 . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Completion . . . . . . . . . . . . . . . . . . . . . 36

4 Week 4 40
4.1 Lecture 4-1 . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Exercise course . . . . . . . . . . . . . . . . . . . 40
4.2 Lecture 4-2 . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Banach Fixed-point Theorem . . . . . . . . . . . 43

5 Week 5 45
5.1 Lecture 5-1 . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Bounded Linear Operators/Maps . . . . . . . . . 45
5.2 Lecture 5-2 . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Some exercises . . . . . . . . . . . . . . . . . . . 50

6 Week 6 54
6.1 Lecture 6-1 . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.1 Compactness, Relative Compactness and Total
Boundedness . . . . . . . . . . . . . . . . . . . . 54

6.2 Lecture 6-2 . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.1 Finite Dimensional Linear Normed Spaces . . . . 59

Page 4 of 198



CONTENTS CONTENTS

7 Week 7 64
7.1 Lecture 7-1 . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1.1 Construct more Linear Normed Spaces . . . . . . 64
7.1.2 Unbounded Linear Functional . . . . . . . . . . . 66

7.2 Lecture 7-2 . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2.1 Theorems about Banach Spaces . . . . . . . . . . 68
7.2.2 Baire Category Theorem . . . . . . . . . . . . . . 70

8 Week 8 74
8.1 Lecture 8-1 . . . . . . . . . . . . . . . . . . . . . . . . 74

8.1.1 Application of Banach-Steinhaus Theorem . . . . 74
8.2 Lecture 8-2 . . . . . . . . . . . . . . . . . . . . . . . . 84

8.2.1 Open Mapping Theorem (general version) . . . . 84
8.2.2 Closed Graph Theorem . . . . . . . . . . . . . . 86

9 Week 9 89
9.1 Lecture 9-1 . . . . . . . . . . . . . . . . . . . . . . . . 89

9.1.1 Hahn-Banach Theorem . . . . . . . . . . . . . . 89
9.2 Lecture 9-2 . . . . . . . . . . . . . . . . . . . . . . . . 94

9.2.1 Review . . . . . . . . . . . . . . . . . . . . . . . 94

10 Week 10 98
10.1 Lecture 10-1 . . . . . . . . . . . . . . . . . . . . . . . . 98

10.1.1 Something about Dual Space . . . . . . . . . . . 100
10.2 Lecture 10-2 . . . . . . . . . . . . . . . . . . . . . . . . 104

10.2.1 More Dual Spaces . . . . . . . . . . . . . . . . . 104
10.2.2 Weak Convergence . . . . . . . . . . . . . . . . . 106

11 Week 11 113
11.1 Lecture 11-1 . . . . . . . . . . . . . . . . . . . . . . . . 113

11.1.1 More about Weak Convergence and Weak-star
Convergence . . . . . . . . . . . . . . . . . . . . 113

11.1.2 Conjugate Operators . . . . . . . . . . . . . . . . 115
11.2 Lecture 11-2 . . . . . . . . . . . . . . . . . . . . . . . . 118

11.2.1 Compact Operators and Finite-rank Operators . 119

12 Week 12 126
12.1 Lecture 12-1 . . . . . . . . . . . . . . . . . . . . . . . . 126

12.1.1 Inner Product and Inner Product Space . . . . . 126
12.1.2 Hilbert Space . . . . . . . . . . . . . . . . . . . . 129

12.2 Lecture 12-2 . . . . . . . . . . . . . . . . . . . . . . . . 129
12.2.1 Orthogonality . . . . . . . . . . . . . . . . . . . . 129

Page 5 of 198



CONTENTS CONTENTS

13 Week 13 134
13.1 Lecture 13-1 . . . . . . . . . . . . . . . . . . . . . . . . 134

13.1.1 Orthonormal Basis . . . . . . . . . . . . . . . . 135
13.2 Lecture 13-2 . . . . . . . . . . . . . . . . . . . . . . . . 141

13.2.1 Projection . . . . . . . . . . . . . . . . . . . . . . 141
13.2.2 Further Topics . . . . . . . . . . . . . . . . . . . 144

14 Week 14 147
14.1 Lecture 14-1 . . . . . . . . . . . . . . . . . . . . . . . . 147

14.1.1 Riesz Representation Theorem . . . . . . . . . . 147
14.1.2 Application . . . . . . . . . . . . . . . . . . . . . 154

14.2 Lecture 14-2 . . . . . . . . . . . . . . . . . . . . . . . . 157
14.2.1 More about adjoint operators . . . . . . . . . . . 157

15 Week 15 170
15.1 Lecture 15-1 . . . . . . . . . . . . . . . . . . . . . . . . 170

15.1.1 Normal Operator . . . . . . . . . . . . . . . . . . 170
15.1.2 Partial Isometric Operator . . . . . . . . . . . . 175
15.1.3 Look Back . . . . . . . . . . . . . . . . . . . . . . 176

15.2 Lecture 15-2 . . . . . . . . . . . . . . . . . . . . . . . . 177
15.2.1 Introduction to Spectrum Theory . . . . . . . . . 177
15.2.2 Recall Linear Algebra . . . . . . . . . . . . . . . 182
15.2.3 Classification of Spectrum and so on . . . . . . . 182

16 Week 16 184
16.1 Lecture 16-1 . . . . . . . . . . . . . . . . . . . . . . . . 184

16.1.1 Exercise Course: Question Part . . . . . . . . . . 184
16.1.2 Exercise Course: Solution Part . . . . . . . . . . 184

16.2 Lecture 16-2 . . . . . . . . . . . . . . . . . . . . . . . . 187
16.2.1 Exercise Course: Question Part . . . . . . . . . . 187
16.2.2 Exercise Course: Solution Part . . . . . . . . . . 188

A Hamel Basis 190

B Banach Functor 192

C Uniqueness of Completion 196

Page 6 of 198



0 INTRODUCTION

0 Introduction
Here is something about this note.

Syllabus
This lecture note contains topics as follows:

• Foundations:

– Linear Normed space;

– Bounded Linear Map;

– Banach Space and Completion.

• Important Theorems:

– Baire Category Theorem;

– Banach-Steinhaus Theorem;

– Open Mapping Theorem;

– Closed Graph Theorem.

• Topics about Duality:

– Dual Space;

– Natural Embedding;

– Weak/Weak∗ Convergence.

• Compact/Finite-Rank Operator:

• Hilbert Space:

– Definition and Examples;

– Orthogonality and related topics:

∗ Pythagoras Theorem;
∗ Bessel’s Inequality;
∗ Gram-Schmidt process;
∗ Complete Orthonormal Basis.

– Projection:

∗ Projection Theorem;
∗ Projection Operator.

– Riesz Representation Theorem (on Hilbert space):
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0 INTRODUCTION

– Applications:

∗ Sesquilinear functional and Representation Theorem;
∗ Hilbert Adjoint Operator:
∗ Self-Adjoint Operator;
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1 WEEK 1

1 Week 1

1.1 Lecture 1-1
We begin from Banach Space and Metric Space. Before the def-
inition of Banach space, we should recall the definition of Vector
spaces(or Linear Spaces). Given a set X, a vector space is a triple
(X,+, ·) where +: X × X → X is called the addition on X, and
· : K×X → X is called scalar-multiplication on X, satisfying 8 axioms.

Recall

An isomorphism between vector space means a bijection that keeps the
linear structure, that is φ : X → Y satisfies: ∀k, l ∈ K,∀x, x′ ∈ X we
have φ(kx + lx′) = kφ(x) + lφ(x′). Isomorphism in categories should
be in mind:

Category Grp LinK Top

Isomorphism Group
isomorphism

K-Linear
isomorphism Homeomorphism

1.1.1 Linear Normed Spaces

Definition (Linear Normed Space). Let X be a linear space. Define a
map ∥ ∥ : X → R≥0 satisfying:

(i) ∥x∥ = 0(∈ K) ⇐⇒ x = 0(∈ X);

(ii) ∥kx∥ = |k| · ∥x∥(∀k ∈ K, x ∈ X);

(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥(∀x, y ∈ X).

Then ∥ ∥ is called a norm over X, and (X, ∥ ∥ is called a linear
normed space.

Remark 1.1. There is some similar weaker definitions:

• If (only) (i) is not satisfied, we call ∥ ∥ a semi-norm.

• If (only) (iii) becomes ∥x+ y∥ ≤ C(∥x∥+∥y∥) for some C ∈ R>1,
we call ∥ ∥ a quasi-norm.

Equivalently, we can change the codomain of ∥ ∥ to R and (i) to

(∀x ∈ X, ∥x∥ ≥ 0) ∧ (∥x∥ = 0 ⇐⇒ x = 0).
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1.1 Lecture 1-1 1 WEEK 1

Example 1 (Euclidean Spaces). (Rn, ∥ ∥) is a linear normed space,
who-se norm is defined as follow:

∥ ∥ : Rn → R≥0, x = (x1, . . . , xn) 7→
( n∑
j=1

x2j

)1/2

(= d(x, 0)).

Triangle inequality for this norm comes to be the particular triangle
inequality for the metric, which can be shown by Cauchy-Schwarz in-
equality for real numbers.

Example 2 (Continuous Functions Spaces).
(
C([a, b],K),max[a,b]| |

)
is a linear normed space. Recall the definition of C([a, b],K) the family
of continuous function from [a, b] to K. whose norm is defined as follow:

max
[a,b]
| | : (C([a, b],K)→ [0,∞), f 7→ max

x∈[a,b]
|f(x)|.

Recall why C([a, b],K) is a vector space. What is needed to show is
just “addition of continuous functions is continuous”, and there is lots
of ways to do this, see remark. Notice that [a, b] is compact and so is
f([a, b]), guaranteeing the existence of maxx∈[a,b]|f(x)|. Compatibility
with multiplication and triangle inequality is trivial.

Remark 1.2. We have many methods for proving “addition of contin-
uous functions is continuous”. They give the same result with different
standpoints. Suppose f, g ∈ C([a, b],K)

1. By the definition of continuity: We prove pointwisely: Fix x ∈
[a, b]. ∀ε > 0,we can find δ1, δ2 > 0 such that ∀y : 0 < |y − x| <
δ1, |f(y)− f(x)| < ε/2 and ∀y : 0 < |y − x| < δ2, |g(y)− g(x)| <
ε/2. Therefore, let δ := δ1 ∧ δ2 and we have ∀y : 0 < |y − x| < δ,

|(f + g)(y)− (f + g)(x)| =|f(y) + g(y)− f(x)− g(x)|
≤|f(y)− f(x)|+ |g(y)− g(x)|
<ε/2 + ε/2

=ε.

Therefore, f + g is continuous at x.

2. By sequence: We prove pointwisely: Fix x ∈ [a, b]. Suppose there
is a sequence (xn)n∈N ⊆ [a, b] converges to x, then:

lim
n→∞

(f + g)(xn) = lim
n→∞

(
f(xn) + g(xn)

)
= lim
n→∞

f(xn) + lim
n→∞

g(xn)

=f(x) + g(x)

=(f + g)(x).
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1.1 Lecture 1-1 1 WEEK 1

Therefore, f + g is continuous at x.

3. By the topological definition(K = R case): an observation :

(f + g)−1(t,∞) =
⋃
r∈R

(
f−1(t− r,∞) ∩ g−1(r,∞)

)
,

which should be prove by A ⊆ B ∧ B ⊆ A =⇒ A = B. Right
hand side is union of intersection of two open sets, and similarly
for (f + g)−1(−∞, t). We’re done.

4. By the continuity of addition(K = R case): We decompose f + g
as following communicative diagrams

[a, b] R× R

R

⟨f,g⟩

f+g
+

x (f(x), g(x))

f(x) + g(x)

The right diagram explains what the functions in the left diagram
mean. By the property of product topology and continuity of f
and g, we know ⟨f, g⟩ is continuous. Continuity of +: R×R→ R
is trivial. Therefore f + g = + ◦ (⟨f, g⟩) is continuous.

To get rid of the assumption K = R, use the fact that f : X → C is
continuous if and only if both Re(f), Im(f) are continuous.

Example 3 (p-summable sequence spaces). Given p ∈ [1,∞] we define
(ℓp, ∥ ∥p), where

ℓp :=
{
(an)n∈N :

∑
n≥1

|an|p <∞
}
, (for p <∞)

ℓ∞ :=
{
(an)n∈N : sup

n∈N
|an| <∞

}
.

And norms are

∥a∥p :=
(∑
n≥1

|an|p
)1/p

, (for p <∞)

∥a∥∞ := sup
n∈N
|an|. (Here a means (an)n∈N)

Proposition 1.1. (ℓ∞, ∥ ∥∞) is a normed space.

Proof. Clearly ℓ∞ is a vector space. Now we prove ∥ ∥∞ is a norm.

Page 11 of 198



1.1 Lecture 1-1 1 WEEK 1

1. ∥a∥∞ ≥ 0 and ∥a∥∞ = 0 ⇐⇒ a = 0: ∥a∥∞ ≥ 0 is trivial.
Suppose ∥a∥∞ = 0, that is supn∈N|an| = 0. By definition of
supremum, |an| ≤ 0(∀n ∈ N). Therefore, a = 0.

2. ∀k ∈ K, by property of absolute value we know ∥ka∥∞ = |k|∥a∥∞.

3. Let a, b ∈ ℓ∞ and Ma = ∥a∥∞,Mb = ∥b∥∞. Now from definition
of supremum

∀n ∈ N : |an + bn| ≤ |an|+ |bn| ≤Ma +Mb

Again using definition of supremum, we get ∥a+ b∥∞ ≤Ma+Mb,
which was what we wanted.

Theorem 1.2 (Minkowski’s Inequality). For each measure space (Ω,F ,
µ) and f, g ∈ Lp(1 ≤ p ≤ ∞), we have

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Remark 1.3. In general, the inequality ∥f + g∥p ≤ ∥f∥p+∥g∥p(p ≥ 1)
is called the Minkowski’s inequality.

Example 4. ℓ∞ has linear subspaces: c0 ⊆ c ⊆ ℓ∞, where

c :={(xn)n∈N ∈ RN : (xn)n∈N is a convergent sequence},
c0 :={(xn)n∈N ∈ RN : (xn)n∈N is a convergent sequence with limit 0}.
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1.2 Lecture 1-2 1 WEEK 1

1.2 Lecture 1-2
1.2.1 Lebesgue integrable function spaces

Recall the left problem: Minkowski’s inequality, which makes (ℓp, ∥ ∥p)
a normed space. Now, we need a lemma.

Lemma 1.3 (Hölder’s Inequality). Let a ∈ ℓp, b ∈ ℓq for p ∈ (1,∞)
and q ∈ (1,∞) satisfy 1/p+ 1/q = 1, we have:

∥ab∥1 ≤ ∥a∥p∥b∥q, (1)

Remark 1.4. q = p/(p− 1) is also called the dual index of p, usually
denoted by p′.

Remark 1.5. Before start of the proof, we have a look at (1). Recall
what we have learned in mathematical analysis, and have a problem in
mind: is there anything similar? That is Cauchy-Schwarz Inequality,
since they coincide when p = q = 2 . Now we have a direct goal.

Aim. Prove (1) by imitating the proof of Cauchy-Schwarz Inequality.

Now, recall all the proofs of Cauchy-Schwarz Inequality you know
and think: Which would be useful in this case? [6] Lagerange’s Idendity,
Schwarz’s argument(inner product ⟨x+ ty, x+ ty⟩ ≥ 0 ), or just 2xy ≤
x2+y2? When p ̸= 2, Schwarz’s argument is a nonstarter since there is
no quadratic polynomial in sight. Similarly, the absence of a quadratic
form means that one is unlikely to find an effective analog of Lagrange’s
identity.

This brings us to our most robust proof of Cauchy-Schwarz Inequal-
ity, the one that starts with the so-called “humble bound,”

xy ≤ x2

2
+
y2

2
,∀x, y ∈ R. (2)

(2) proves Cauchy’s inequality as follows.

Proof of Cauchy’s inequality from (2). Without lost of generality,
suppose that

∑
n≥1 a

2
n = A2 ̸= 0 and

∑
n≥1 b

2
n = B2 ̸= 0. Let

a′j = aj/A, b
′
j = bj/B, ∀j ∈ N.

Notice that
∑
n≥1(a

′
n)

2 =
∑
n≥1(bn′)2 = 1. Now (2) implies∑

n≥1

anbn ≤
∑
n≥1

(a2n + b2n)/2 =
∑
n≥1

a2n/2 +
∑
n≥1

b2n/2 = 1.
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1.2 Lecture 1-2 1 WEEK 1

x

y
the line y = x

a

b

Figure 1: Area meaning of (2)

And, in terms of (an)n∈N, (bn)n∈N, and multiply AB on both sides, we
have ∑

n≥1

anbn ≤
(∑
n≥1

a2n

)1/2(∑
n≥1

b2n

)1/2

.

This bound may now remind us that the general AM-GM inequality

xy ≤ xp

p
+
yq

q
for all x, y ≥ 0 and q = p′(p, q > 1). (3)

(3) is the perfect analog of the “humble boun”(2).

Proof of (2). There is many ways to to this, see[6]. We choose the
way by area of regions. Consider the region under the function x 7→ x:

A :={(x, y) ∈ R2 : 0 ≤ y ≤ x ≤ a},
B :={(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ b}.

Then Figure 1 shows that m(A) +m(B) ≥ m([0, a] × [0, b]), where m
denotes the Lebesgue measure on R2.

Now, by imitating the proof of (2), we need to get the xp/p as area
of some region under a function, so consider the function x 7→ xp−1.

Proof of (3).
It’s easy to verify that

m(A) =

∫
[0,a]

f dm,m(B) = b
p

p−1 −
∫
[0,bp/(p−1)]

f dm,

where m is the Lebesgue measure on R. By simple calculation, we have
m(A) = ap/p,m(B) = bq/q. Notice that A ∪ B contains [0, a] × [0, b],
we’re done.
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1.2 Lecture 1-2 1 WEEK 1

0.5 1 1.5

0.5

1

1.5

x

y

Figure 2: Fucking Area meaning of (3)

Proof of (1). Without loss of generality, suppose ∥a+ b∥p ̸= 0. And
suppose a ̸= 0(∈ ℓp), b ̸= 0(∈ ℓq). As what we do in the proof of
Cauchy’s inequality, let

a′j = aj/∥a∥p, b
′
j = bj/∥b∥p,∀j ∈ N.

Notice that ∥a′∥p = ∥b′∥q = 1. Now, apply (3) to |ajbj |, we have∑
n≥1

|a′nb′n| ≤
∑
n≥1

|a′n|
p
/p+

∑
n≥1

|b′n|
q
/q = 1/p+ 1/q = 1,

which implies
∥ab∥1 ≤ ∥a∥p∥b∥p.

Proof of Minkowski’s inequality.

∥x+ y∥pp =
∑
n≥1

|(x+ y)n|p

=
∑
n≥1

|xn + yn|p−1|xn + yn|

≤
∑
n≥1

|xn + yn|p−1
(|xn|+ |yn|)(Triangle inequality on R)

=
∑
n≥1

|xn + yn|p−1|xn|+
∑
n≥1

|xn + yn|p−1|yn|

=
∥∥(x+ y)p−1x

∥∥
1
+
∥∥(x+ y)p−1y

∥∥
1
(def of norm)

≤
∥∥(x+ y)p−1

∥∥
q
∥x∥p +

∥∥(x+ y)p−1
∥∥
q
∥y∥p(see (1)) (∗)

=∥(x+ y)∥p/qp (∥x∥p + ∥y∥p)((p− 1)q = p),

and divide ∥x+ y∥p/qp (̸= 0) from both sides, getting

∥x+ y∥p−p/qp ≤ ∥x∥p + ∥y∥p.

We’re done, since p− p/q = 1.
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1.2 Lecture 1-2 1 WEEK 1

To summarize what we have done, we need the language of measure.

Definition (σ-algebra). A σ-algrbra on a set Ω is a subset Ω, satis-
fying:

1. Ω,∅ ∈ F ;

2. A ∈ F =⇒ Ω \A ∈ F ;

3. (An)n∈N ⊆ F =⇒
⋃
n≥1An ∈ F .

Definition (Measurable Space). A measurable space is a double
(Ω,F) where Ω is an aritrary set and F is a σ-algebra over Ω. Elements
of F is called measurable sets of (Ω,F).

Definition (Measure, Measure space). A measure is a σ-additive
function from F to [0,∞]. A triple (Ω,F , µ) is called a measure
space, if (Ω,F) is a measurable space and µ is a measure.

Definition (Integral with respect to measure). Let (Ω,F , µ) be a mea-
sure space. We have a glance at “how to define integral with respect to
measure”. For the detail, see [3].

Step 1: Define integral
∫

for measurable simple nonnegative func-
tion:

n∑
k=1

akχAk
7−→

n∑
k=1

akµ(Ak).

Step 2: Define integral
∫

for measurable nonnegative function:

f 7−→ sup
{∫

φ : φ ≤ f, φ is nonnegative simple function
}
.

Step 3: Define integral
∫

for measurable function:

f 7−→
∫
f+ dµ−

∫
f− dµ,

where f+ = fχf−1[0,∞), f
− = −fχf−1(−∞,0] .

Definition (p-integrable space). Let (Ω,F , µ) be a measure space, then
the p-integrable space over Lp(Ω,F , µ) is defined as

Lp(Ω,F , µ) :=
{
f ∈ KΩ : f is measurable and

∫
|f |p dµ <∞

}
.
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Fact. The proof of Minkowski’s inequalityover ℓp actually proved the
Minkowski’s inequalityof every p-integrable space Lp(Ω,F , µ).

To understand this fact, we should have another way to illustrate∑
. That is,

∑
is a kind of integral.

Definition (Counting Measure). Given a measurable space (Ω,F).
Define µ : F → [0,∞], A 7→ ♯A. Where ♯A = ∞ if A is an infinite set,
and ♯A = n if A has exactly n elements. µ is called the counting
measure over (Ω,F).

Remark 1.6. It can be shown that,[1] for real sequence (an)n∈N (equiv-
alent to a function a : N→ R ), we have∑

n≥1

an =

∫
a dµ.

That’s why we can respect
∑

as
∫

. And hence, the fact above is just
regard

∑
as integral with respect to coungting measure, and the proof

works for arbitrary measure space.

Remark 1.7. We can also prove Minkowski’s inequalityof Lp by using
the Lp′ . Since

∥f∥p = sup
{∣∣∣∣∫ fg dµ

∣∣∣∣ : g ∈ Lp′(Ω,F , µ), ∥g∥p′ ≤ 1
}
.
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2 WEEK 2

2 Week 2

2.1 Lecture 2-1
2.1.1 Quotient Spaces

LetX be a vector space with a linear subspaceX0, denoted asX0 ↪→ X.

Definition (Coset). ∀x ∈ X, the coset of x (with respect to X0),
denoted as [x] or x+X0 is defined as

[x] = x+X0 := {x+ y : y ∈ X0}.

Definition (Quotient Space). X⧸X0
:= {[x] : x ∈ X}, called the

quotient space of X (with respect to X0).

We want X⧸X0
to be a vector space, so we define operations as

follows:

⊕ : X⧸X0
×X⧸X0

→X⧸X0
, ([x], [y]) 7→ [x+ y];

⊙ : K×X⧸X0
→X⧸X0

, ([x], k) 7→ [kx].

Where [x + y] means the addtion (and take the coset), and the [kx]
means the scalar multiplication of X (and take the coset). You should
verify that the operations are well defined. For simplicity, we write +, ·
instead of ⊕,⊙.

Claim. (X⧸X0
,+, ·) is a vector space.

Question 2.1. Think this questions:

1. Clearly, the zero element in X⧸X0
is [0]. But, [0] =?;

2. If [x] ̸= [y], what is [x] ∩ [y] ?

3. Show that x ∈ [y] ⇐⇒ x− y ∈ X0.

Answers are as follows:

1. [0] = X0 , from definition of coset.

2. ∅. Since (3) implies [x] ∩ [y] ̸= ∅ means ∃z : z − x, z − y ∈ X0,
therefore x − y = (z − y) − (z − x) ∈ X0 since X0 is a linear
subspace. Now, ∀a ∈ [x], from a = x + w(w ∈ X0), we have
a = y +

(
w + (x− y)

)
and

(
w + (x− y)

)
∈ X0 so a ∈ [y]. Above

all, [x] ⊆ [y]. It is the same to know [y] ⊆ [x].
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3. Since

x ∈ [y] ⇐⇒ x = y + z for some z ∈ X0

⇐⇒ x− y = z(= 0 + z) for some z ∈ X0

⇐⇒ x− y ∈ [0] = X0.

Let’s see a simple example:

Example 5. From Example 4, c0 ↪→ c ↪→ ℓ∞. And we introduce a
new notion:

Definition (Codimension). Suppose X a vector space and X0 ↪→ X.
Then the codimension of X0, is codimX X0 := dimX⧸X0

. Also denoted
by just codim(X0) if there is no confusion.

Claim. codimc c0 = 1.

Proof. Let (1n)n∈N be the sequence with all elements 1. We want to
show that {(1n)n∈N} is a basis of c⧸c0. Let (xn)n∈N ∈ c, and suppose
limn xn = x ∈ K. We have [(xn)n∈N] = [x(1n)n∈N], since x(1n)n∈N is
just the sequence with all elements x, and clearly limn(xn−x) = 0 =⇒
(xn)n∈N−x(1n)n∈N ∈ c0. That is, [(xn)n∈N] = [x(1n)n∈N] = x[(1n)n∈N].
We’re done.

Remark 2.1. There is an isomorphism from c⧸c0 to K: [(xn)n∈N] 7→
limn xn.

Example 6. Consider X = R2, X0 ↪→ X with dimX0 = 1. It is easy
to see that ∀x ∈ R, the coset containing x is just translating X0 such
that 0(∈ X0) is translated to x. And

X⧸X0
= {X0} ∪ {all lines that are parallel to X}.

Now we want to define a norm on X⧸X0
. An intuitive norm is the

distance between X0 and the coset.

Definition (Norm on X⧸X0
). Define

∥ ∥ : X⧸X0
→ R≥0, [x] 7→ inf

y∈X0

∥x− y∥.

The norm in green color is the usual norm in R2, see Example 1.

We should verify that ∥ ∥ is actually a norm. That is
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X0

[x]

x

Figure 3: X,X0 and points of X⧸X0

Question 2.2. Verify that :

1. ∀[x] ∈ X⧸X0
: ∥[x]∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = X0;

2. ∀[x] ∈ X⧸X0
: ∥k[x]∥ = |k| · ∥x∥;

3. ∥[x] + [y]∥ ≤ ∥[x]∥+ ∥[y]∥.

Proof. For 1: Only needed is to show that ∥x∥ = 0 ⇐⇒ x = X0.
Here we use Theorem 2.1 and a trivial fact:

Fact. X0 is a closed subset of X.

Now suppose [x] ∈ X⧸X0
satisfying ∥[x]∥ = 0. By definition, we

have infy∈X0
∥x− y∥ = 0. From the definition of infimum : ∀n ∈

N∃yn ∈ X0 such that ∥x− yn∥ < 1/n, therefore we have a sequence
(yn)n∈N ⊆ X0 converging to x. From the theorem below, we know
x ∈ X0, so [x] = X0 as we wanted.

2: It holds naturally when k = 0. If k ̸= 0, it just follows from
property of norm and k−1X0 = X0.

3: Intuitively , we have

∥[x] + [y]∥ =∥[x+ y]∥
= inf
z∈X0

∥x+ y − 2z∥

≤ inf
z∈X0

(∥x− z∥+ ∥y − z∥)(triangle inequality of norm)

≤ inf
z∈X0

∥x− z∥+ inf
z∈X0

∥y − z∥

=∥[x]∥+ ∥[y]∥.
(4)
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So easy, isn’t it? However, look at the ≤, this inequality is non-trivial
and we should prove. By simple application of definition of infimum,
we find: the inequality is reversed! But (4) can be corrected: ∀ε > 0,
∃zε ∈ X0, wε ∈ X0 such that

∥x− zε∥ < inf
z∈X0

∥x− z∥+ ε/2 = ∥x∥+ ε/2,

∥y − wε∥ < inf
z∈X0

∥y − z∥+ ε/2 = ∥y∥+ ε/2.

Therefore we have

inf
z∈X0

(∥x− z∥+ ∥y − z∥) ≤ ∥x∥+ ∥y∥+ ε.

Since ε is arbitrary, we know infz∈X0
(∥x− z∥ + ∥y − z∥) ≤ ∥x∥ + ∥y∥

and then ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
However, this is wrong again. Since zε may not coincide with wε.

To fix this, write

∥[x+ y]∥ = inf
z,w∈X0

∥x+ y − (z + w)∥. (5)

By (5), and ∥x+ y − (z + w)∥ ≤ ∥x− z∥+ ∥y − w∥ , we use the defini-
tion of inf for infz∈X0∥x− z∥, infw∈X0∥y − w∥. We can find zε, wε as
above and get ∥[x+ y]∥ ≤ ∥[x]∥+ ∥[y]∥+ ε, we’re done.

Above all, ∥ ∥ is actually a norm.

Remark 2.2. We define the topology of linear normed space as follows:

Definition (Topology of linear normed space). Let (X, ∥ ∥) be a linear
normed space. Then there is a natural metric on X, that is d : X×X →
R≥0, (x, y) 7→ ∥x− y∥. The topology induced by this metric is called
the (usual) topology of (X, ∥ ∥).

Now we have a topology of X, and we have a result characterizing
the closed subsets of X.

Theorem 2.1. Given a linear normed space X with X0 ↪→ X. Then,
X is closed if and only if for all (xn)n∈N ⊆ X0 such that limn xn =
x ∈ X, we have x ∈ X0.

Remark 2.3. A quotient semi-norm in X⧸X0
is a norm if and only if

X0 is closed.
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2.2 Lecture 2-2
2.2.1 Metric Spaces

Definition (Metric, Metric Spaces). Let X be a set. d : X ×X → R
is called a metric, if d satisfies:

1. ∀x, y ∈ X : d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y.

2. ∀x, y ∈ X : d(x, y) = d(y, x).

3. ∀x, y, z ∈ X : d(x, y) + d(y, z) ≥ d(x, z).

The ordered pair (X, d) is called a metric space.

Remark 2.4. Every metric space has a topology, we will discuss this
later.

Remark 2.5. Let’s compare normed spaces and metric spaces: normed
space need linear structures but metric spaces don’t need. A normed
space (X, ∥ ∥) is naturally a metric space by the metric induced by
norm d : X ×X → R, (x, y) 7→ ∥x− y∥.

Remark 2.6. Let X be an arbitrary set, we can define a metric on X
by the Kronecker symbol δ.

Example 7. (Rn, d) is a metric space, where

d : Rn × Rn → R,
(
(x1, . . . , xn), (y1, . . . , yn)

)
7→

( n∑
j=1

(xj − yj)2
)1/2

.

Example 8. (RN, d) is a metric space, where

d : RN × RN → R,
(
(xn)n∈N, (yn)n∈N

)
7→

∑
j≥1

1

2j
|xj − yj |

1 + |xj − yj |
.

d is well-defined, since the series can be dominated by
∑∞
j=1 1/2

j . To
verify the triangle inequality, we use the monotone function f : [0,∞)→
[0, 1), x 7→ x/(1 + x). So, |xj − yj |+ |yj − zj | ≥ |xj − zj | implies

|xj − yj |+ |yj − zj |
1 + |xj − yj |+ |yj − zj |

≥ |xj − zj |
1 + |xj − zj |

,

and clearly the left-hand side is no more than f(|xj − yj |)+f(|yj − zj |).
Sum for j ∈ N and we’re done.
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Example 9. Let (Ω,F , µ) be a measure space with µ(Ω) < ∞. Let
L0(Ω) be the space of all F-measurable functions from Ω to K, written
L0 for short. Define

Z := {f ∈ L0(Ω) : f(x) = 0 for µ-almost every x ∈ Ω},

the (linear) subspace containing all functions equal 0 µ-almost every-
where. Now consider the quotient space L0⧸Z. We define

d : L0⧸Z ×
L0⧸Z −→ R

(f + Z, g + Z) 7−→
∫
Ω

|f − g|
1 + |f − g|

dµ.
(6)

Integrand on the right-hand side can be dominated by 1Ω(= 1), hence
the integral is finite. The definition of d involves the selection of repre-
sentative element, so we should verify that d is well-defined. Suppose
f +Z = f ′ +Z, g = g′ +Z, and suppose f, g is finite everywhere, then

∃A1 : µ(A1) = 0 ∀x ∈ Ac1 f(x) = f ′(x);

∃A2 : µ(A2) = 0 ∀x ∈ Ac1 g(x) = g′(x).
(7)

Then f(x)−g(x) = f ′(x)−g′(x) for all x ∈ (A1∪A2)
c and µ(A1∪A2) =

0. Therefore f −g = f ′−g′ µ-almost everywhere, and hence |f−g|
1+|f−g| =

|f ′−g′|
1+|f ′−g′| µ-almost everywhere, implying that their integration coincide.
Above all, d(f + Z, g + Z) = d(f ′ + Z, g′ + Z) whenever f − f ′ ∈
Z, g − g′ ∈ Z.

Proof of “d is a metric” is the same as the previous example.

Example 10. These are all metric spaces, since they are linear normed
spaces: ℓp, c0, c, C([a, b],K), Lp,Rn.

Definition (Convergence in metric space). Let (X, d) be a metric
space. A sequence in X, say (xn)n∈N ⊆ X. We say (xn)n∈N is conver-
gent to x ∈ X, if limn d(xn, x) = 0(limit of real sequence). (xn)n∈N is
convergent to x is usually denoted by (xn)n∈N

d→ x or (xn)n∈N → x if
there is no ambiguity.

Example 11. Suppose X is an arbitrary set. (X, δ) is a metric space,
where δ means the Kronecker symbol. Then

(xn)n∈N → x ⇐⇒ ∃N ∈ N ∀n ≥ N xn = x.

Example 12. Consider
(
(C[a, b],K), d

)
, where

d : (C[a, b],K)× (C[a, b],K)→ R, (f, g) 7→ max
[a,b]
|f − g|.
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Then (fn)n∈N
d→ f ⇐⇒ (fn)n∈N converge to f uniformly, as we

learned in Mathematical Analysis.

Example 13. Recall (L0⧸Z, d), (f+Zn)n∈N
d→ f+Z ⇐⇒ (fn)n∈N

µ→
f .

Proof. Necessity:(f + Zn)n∈N
d→ f + Z means

lim
n

∫
Ω

|fn − f |
1 + |fn − f |

dµ = 0.

Given σ > 0. Define a set Eσn := {x ∈ Ω : |fn(x)− f(x)| > σ}, we need
to show limn µ(E

σ
n) = 0. By Chebyshev’s inequality:

µ(Eσn) =µ{x ∈ Ω : |fn(x)− f(x)| > σ}

=µ
{
x ∈ Ω :

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

>
σ

1 + σ

}
≤1 + σ

σ

∫
En

σ

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dµ

≤1 + σ

σ

∫
Ω

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

dµ

=
1 + σ

σ
d(fn + Z, f + Z).

limn d(fn + Z, f + Z) = 0 implies limn µ(E
σ
n) = 0, that is fn

µ→ f .
Sufficiency: Given σ ∈ (0, 1), we know:{

x ∈ Ω :
|fn − f |

1 + |fn − f |
> σ

}
= {x ∈ Ω : |fn − f | >

σ

1− σ
}.

This implies that |fn−f |
1+|fn−f |

µ→ 0.
Now, from the dominated convergence theorem (1Ω being the dom-

inated function, here we need µ(Ω) <∞), we have:

lim
n
d(fn + Z, f + Z) = lim

n

∫
Ω

|fn − f |
1 + |fn − f |

dµ

=

∫
Ω

lim
n

|fn − f |
1 + |fn − f |

dµ

= 0.
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Topology of metric spaces

Definition (Topology of metric space). The topology of a metric space
(X, d) is generated by the base

B = {B(x, r) : x ∈ X, r ∈ (0,∞)},

where B(x, r) := {y ∈ X : d(y, x) < r}.

Remark 2.7. Now we can define these things for metric spaces:

• Interior points of a set.

• Interior of sets.

• Limit points of a set.

• Derived sets.

• Closure.

• Isolated point.

• Boundary.

Fact. For a metric space (X, d):

1. A set G is open ⇐⇒ ∀x ∈ G ∃r > 0 B(x, r) ⊆ G.

Proof. Sufficiency is trivial. For necessity, since each open set is
union of bases, then x ∈ G must lie in a open ball contained in
G, and we can find some r > 0 such that B(x, r) is contained in
the open ball.

2. Intersection of open sets may not be open. For example,⋂
n∈N

(−1/n, 1/n) = {0}.

Definition (Continuity for maps between Metric Spaces). Let (X, dX),
(Y, dY ) be two metric spaces. We say f : X → Y is continuous at x ∈ X,
if ∀ε > 0 ∃r > 0 such that f

(
B(x, r)

)
⊆ B

(
f(x), ε

)
. f is continuous if

f is continuous at every x ∈ X.

Theorem (Continuity’s Equivalent Conditions). Let (X, dX), (Y, dY )
be two metric spaces. A map f : X → Y is continuous at x if and only
if ∀(xn)n∈N ⊆ X(limn xn = x =⇒ limn f(xn) = f(x)).
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Proof. Suppose f is continuous at x and (xn)n∈N → x. ∀ε > 0,
by continuity of f at x, ∃r > 0 such that f

(
B(x, r)

)
⊆ B

(
f(x), ε

)
.

For this r > 0, by convergence of (xn)n∈N, ∃N ∈ N such that ∀n >
N xn ∈ B(x, r) and hence ∀n > N f(xn) ∈ B

(
f(x), ε

)
. Therefore,

limn f(xn) = f(x).
Suppose ∀(xn)n∈N ⊆ X(limn xn = x =⇒ limn f(xn) = f(x)). If f

is not continuous at x, by definition of continuity,

∃ε0 > 0∀δ > 0∃y ∈ B(x, δ)f(y) /∈ B
(
f(x), ε0

)
.

In particular, take δn = 1/n. Then there is yn ∈ B(x, 1/n) and
f(yn) /∈ B

(
f(x), ε0

)
. Now we have a sequence (yn)n∈N converge to

x but limn f(yn) ̸= x, contradiction. Therefore, f must be continuous
at x.

Definition (Continuity for maps between Topological Spaces). Let
(X, T ), (Y,U) be two topological spaces. We say f : X → Y is contin-
uous if ∀O ∈ U f−1(O) ∈ T .

Theorem (Equivalence of Definitions of Continuity). f : (X, d) →
(Y, d) is continuous if and only if f : (X, TdX ) → (Y, TdY ) is continu-
ous.

Remark 2.8. Here we mean f : (X, d) → (Y, d) is continuous, if it
satisfies the definition of continuous maps between metric spaces. And
“f : (X, TdX )→ (Y, TdY ) is continuous” means it satisfies the definition
of continuous maps between topological spaces.

Proof. Suppose f : (X, d) → (Y, d) is continuous. Since (Y, TdY ) has
the topology base

BY = {B(y, r) : y ∈ Y, r ∈ (0,∞)},

it suffices to show that ∀B(y, r) ∈ BY we have f−1
(
B(y, r)

)
∈ TdX .

Suppose f−1
(
B(y, r)

)
̸= ∅, else it’s automatically open. Since f(x1) ∈

B(y, r), ∃r1 > 0 such that B(f(x1), r1) ⊆ B(y, r). Using the continuity
of f at x1, ∃δ > 0 such that f

(
B(x1, δ)

)
⊆ B

(
f(x1), r1

)
⊆ B(y, r).

Therefore B(x1, δ) ⊆ f−1
(
B(y, r)

)
. This means f−1

(
B(y, r)

)
contains

a neighbourhood for each point of itself, and hence f−1
(
B(y, r)

)
is

open.
Suppose f : (X, TdX ) → (Y, TdY ) is continuous. Then ∀x ∈ X,

f−1
(
B(f(x), r)

)
is open for all r > 0. x ∈ f−1

(
B
(
f(x), r

))
and

f−1
(
B(f(x), r)

)
is union of sets like B(x0, δ0), so we can suppose
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x ∈ B(x0, δ0) for some x0 ∈ X, δ0 > 0. Now choose δ > 0 such
that B(x, δ) ⊆ B(x0, δ0) and we have

f
(
B(x, δ)

)
⊆ f

(
B(x0, δ0)

)
⊆ f

(
f−1

(
B(f(x), r)

))
⊆ B(f(x), r).

We’re done.
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3 Week 3

3.1 Lecture 3-1
Recall

Every linear normed space (X, ∥ ∥) has a metric (induced by its norm)
d : X ×X → R, (x, y) 7→ ∥x− y∥. This is surely a metric, ensured by
the properties of norm. However, a metric space (X, d) need not to be a
linear normed space, since it is possible that X has no linear structure.

Now, suppose (X, d) a metric space, where X is a linear space. We
have a question: is there some norm ∥ ∥ such that d is induced from
∥ ∥ ? If there is a norm that we want, it is clear that ∥ ∥ : X → R, x 7→
∥x∥ := d(x, 0). We want ∥ ∥ is a norm, so it should satisfy:

1. ∥ ∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = 0. This holds, since d is a metric.

2. ∀k ∈ K, x ∈ X, d(kx, 0) = |k|d(x, 0). This should be satisfied.

3. d(x, 0) + d(y, 0) ≥ d(x+ y, 0) as the triangle inequality.

Moreover, d should satisfy d(x+ z, y+ z) = d(x, y), since (x+ z)− (y+
z) = x − y. In fact, the following conditions ensure that d is induced
by a norm:

Condition 1. d(kx, 0) = |k|d(x, 0).

Condition 2. d is translation-invariant, that is d(x+z, y+z) = d(x, y).

Suppose d satisfies condition 1 and condition 2, then it is enough to
show that ∥ ∥ satisfies the triangle inequality.

Proof.

∥x+ y∥ =d(x+ y, 0)

=d(x+ y,−y + y)

=d(x,−y) (condition 2)

≤d(x, 0) + d(0,−y) (triangle inequality of d)
=d(x, 0) + d(−y, 0) (d is symmetric)
=d(x, 0) + d(y, 0) (condition 1)

=∥x∥+ ∥y∥.

We’re done.

Here comes an important notion of functional analysis.
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3.1.1 Banach Space

Definition (Banach Space). A complete linear normed space (X, ∥ ∥)
is called a Banach Space.

Here the word “complete” should be defined.

Definition (Completeness). A metric space (X, d) is complete if every
Cauchy sequence in X converges.

Definition (Cauchy sequence). Let (X, d) be a metric space. A se-
quence (xn)n∈N ⊆ X is said to be a Cauchy sequence, if

lim
m,n
∥xm − xn∥ = 0.

Remark 3.1. Here {∥xm − xn∥}m,n∈N is a double index real sequence,
and “the double index limit is 0 ” should be interpreted as

∀ε > 0∃M ∈ N∃N ∈ N(∀m > M∀n > N |∥xm − xn∥ − 0| < ε).

Warning. Convergent sequence must be Cauchy sequence (from def-
inition), while Cauchy sequence may not converge (as the following
examples).

Example 14. Let d : R×R→ R, (x, y) 7→ |x− y| be the normal metric
on R. Consider (Q, d|Q×Q). This is not a complete metric space, since
Q is dense in R and for arbitrary x ∈ R we can find a sequence (xn)n∈N
that converges to x in R. Consider x ∈ R \Q and we get a sequence in
Q, that is Cauchy in (Q, d|Q×Q) and doesn’t converge to any r ∈ Q. ■

Example 15. Consider
(
C[0, 1], ∥ ∥L1

)
, where ∥ ∥L1

means the norm

∥ ∥L1
: C[0, 1]→ R, f 7→

∫
[0,1]

|f |dm.

This is a norm, since ∥f∥L1
= 0 ⇐⇒ |f | = 0 m-a.e, and continuity

of f ensures f = 0. Other conditions for norm is trivial. And this is a
incomplete normed vector space, since C[0, 1] is dense (with respect to
the norm ∥ ∥L1

) in L1.
From now on, Cp[a, b] means (C[0, 1], ∥ ∥Lp

). ■

Remark 3.2. The completion (which will be defined the next class)
of Cp[a, b], 1 ≤ p <∞ is Lp[a, b], since C[a, b] is dense in L1[a, b]. ■

Example 16. Let P [a, b] := {Polynomial functions defined on[a, b]},
then the linear normed space (P [a, b],max[a,b]| |) is incomplete. Since
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∃f ∈ C[a, b] such that f is not a polynomial, such as f = exp|[a,b].
Suppose exp: R → R is defined as the power series for convenience.
Then by Weierstrass Approximation Theorem, for each fixed ε >
0, there is some p ∈ P [a, b] such that max[a,b]|p− f | < ε.

In fact, for f = exp|[a,b], it is enough to take

pn : [a, b]→ R, x 7→
n∑
j=1

xj

j!
.

By the result in power series theory, we know pn
max[a,b]| |
−−−−−−→ f . ■

Now we compare two normed spaces sharing the underlying set
C[a, b]. C[a, b] means the normed space (C[a, b],max[a,b]| |) somewhere.
And we will prove the completeness of C[a, b].

Normed space C[a, b] Cp[a, b]
Underlying set C[a, b] C[a, b]

Norm max[a,b]| | ∥ ∥p
Completeness complete incomplete

Proof of completeness. Let (fn)n∈N ⊆ C[a, b] be a Cauchy sequence.
That is

∀ε > 0∃N ∈ N∀m,n ≥ N max
[a,b]
|fm − fn| < ε.

Therefore, given any x ∈ [a, b] we have

|fm(x)− fn(x)| ≤ max
[a,b]
|fm − fn| < ε.

That is the sequence
(
fn(x)

)
n∈N is a Cauchy sequence. By the com-

pleteness of R,
(
fn(x)

)
n∈N converge. Then we can define a function

f : [a, b]→ R, x 7→ lim
n
fn(x).

limn fn(x) is surely a real number, as explained above. And we have
two claims.

Claim. fn
max[a,b]| |
−−−−−−→ f .

∀n > N , we have
max
[a,b]
|fm − fn| < ε.
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It’s equivalent to

|fm(x)− fn(x)| < ε(∀x ∈ [a, b]),

and let m→∞, using the continuity of | | (to change the order of limm

and | |)
|f(x)− fn(x)| < ε(∀x ∈ [a, b]),

which is equivalent to
max
∈[a,b]

|f − fn| < ε.

Therefore, fn
max[a,b]| |
−−−−−−→ f .

Claim. f ∈ C[a, b].

It suffices to show that f is uniformly continuous. Given arbitrary
ε > 0, by the convergence of (fn)n∈N

∃N∀n ≥ N max
[a,b]
|fn − f | < ε/3.

Fix this N , and the continuity (equivalent to uniform continuity for
functions on [a, b]) of fN ensures that ∃δ > 0 such that

∀x∀y(|x− y| < δ =⇒ |fN (x)− fN (y)| < ε/3).

And ∀x∀y such that |x− y| < δ, we have

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|
≤ max

[a,b]
|fN − f |+ ε/3 + max

[a,b]
|fN − f |

< ε/3 + ε/3 + ε/3

= ε.

Thus f is uniformly continuous.

Example 17. Suppose 1 ≤ p ≤ ∞. then Lp(Ω,F , µ) is a Banach
space.

Proof. First, suppose 1 ≤ p < ∞. Here is a proof different from
our textbook. Suppose (fn)n∈N is a Cauchy sequence, then (fn)n∈N is
Cauchy in measure (by Chebyshev’s Inequality). By the lemma, ∃ a
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subsequence (fnj )j∈N such that fnj → f µ-a.e.. Therefore, by Fatou’s
Lemma:

lim
j

∥∥fnj
− f

∥∥p
p
= lim

j

∫
Ω

∣∣fnj
− f

∣∣p dµ
≤

∫
Ω

lim inf
j

∣∣fnj − f
∣∣p dµ (Fatou’s Lemma)

= 0. (fnj
→ f µ-a.e.)

While the inequality should be reversed. This can be corrected:∥∥fnj − f
∥∥p
p
=

∫
Ω

lim
n

∣∣fnj − fn
∣∣p dµ

≤ lim inf
j

∫
Ω

∣∣fnj
− f

∣∣p dµ, (Fatou’s Lemma)

and

lim
nj

∥∥fnj − f
∥∥p
p
= lim

nj

∫
Ω

lim
n

∣∣fnj − fn
∣∣p dµ

≤ lim
nj

lim inf
n

∫
Ω

∣∣fnj
− fn

∣∣p dµ (Fatou’s Lemma)

= 0. (Cauchy sequence)

So fnj

∥ ∥Lp−−−−→ f . Minkowski’s inequality shows

∥fn − f∥ ≤
∥∥fn − fnj

∥∥+
∥∥f − fnj

∥∥.
Let nj , n → ∞ and use the fact that (fn)n∈N is Cauchy in norm, we

have fn
∥ ∥Lp−−−−→ f .

If f ∈ Lp, we are done. f is a µ- a.e. limit of (fnj
)j∈N and hence is

measurable. Minkowski’s inequality shows

∥f∥p ≤
∥∥f − fnj

∥∥
p
+
∥∥fnj

∥∥
p
.

The first term is bounded (since the real sequence has limit 0), and the
second term is finite since fnj

∈ Lp.
Then, suppose p = ∞. There is (Am,n)m,n∈N ∈ F such that

µ(Am,n) = 0∀m,n ∈ N and

∀ω ∈ Acm,n |fm(ω)− fn(ω)| ≤ ∥fn − fm∥∞.

Clearly for A := ∪m,n≥1Am,n, we haveµ
()

= 0. And we have

∀ω ∈ Ac|fn(ω)− fm(ω)| ≤ ∥fn − fm∥∞.
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Let m→∞

∀ω ∈ Ac|fn(ω)− f(ω)| ≤ lim
m
∥fn − fm∥∞,

and hence
∥fn − f∥∞ ≤ lim

m
∥fn − fm∥∞.

Let n→∞ and use

lim
n

lim
m
∥fn − fm∥∞ = 0.

We’re done.

Lemma. Let (Ω,F , µ) be a measure space, and (fn)n∈N ⊆ L0(Ω) is
Cauchy in measure, where

L0(Ω):= {f : Ω→ (K,B(K)) that is measurable}.

Then there is a subsequence (gn)n∈N of (fn)n∈N such that gn → f µ−
a.e.. Here f ∈ L0(Ω).

Proof. We can choose a subsequence (gn)n∈N =
(
fnj

)
j∈N such that if

Ej := |gj − gj+1|−1
[2−j ,∞) then µ(Ej) ≤ 2−j . Because

∀j ∈ N lim
m,n→∞

|fm − fn|∗µ[2
−j ,∞) = 0.

And pick nj inductively, such that nj+1 > nj and

|fm − fn|∗µ[2
−j ,∞) < 2−j ∀m,n ≥ nj .

Set Fk :=
⋃
j≥k Ej then µ(Fk) ≤

∑
j≥k 2

−j = 21−k. Continuity from
above is allowed! If x ̸∈ Fk, for i ≥ j ≥ k we have

|gi(x)− gj(x)| ≤
i−1∑
l=j

|gl+1(x)− gl(x)| ≤
i−1∑
l=j

2−l ≤ 21−j ,

which ensures that ∀x ∈ F ck ,
(
gj(x)

)
j∈N is a Cauchy sequence. Let

F =
⋂
j≥1

Fj = lim sup
j

Ej ,

we have µ(F ) = µ(limj Fj) = limj µ(Ej) = 0.

Exercise 3.1. Prove that ℓp is complete when 1 ≤ p <∞.
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Suppose (X, ∥ ∥) is a linear normed space. Let (xn)n∈N ⊆ X satisfies∑
n≥1∥xn∥ < ∞, and we can define the infinite sum for this sequence

as ∑
n≥1

xn := lim
n→∞

Sn, where S : N→ X, j 7→
N∑
j=1

xj .

Proposition 3.1. (X, ∥ ∥) is a Banach space if and only if ∀(xn)n∈N ⊆
X, ∑

n≥1

∥xn∥ <∞ =⇒
∑
n≥1

xn <∞.

Here
∑
n≥1 xn <∞ means

∑
n≥1 xn exists for short.

Proof. Necessity: suppose X is a Banach space, then
∑
n≥1∥xn∥ <∞

implies

∀ε > 0∃N ∈ N∀n > N
( p∑
j=1

∥xn+j∥ < ε(∀p ∈ N)
)
,

and therefore ∀n > N∥Sn+p − Sn∥ ≤
∑p
j=1∥xn+j∥ < ε, this means

that (Sn)n∈N is a Cauchy sequence. X is complete, so (Sn)n∈N con-
verges. That is

∑
n≥1 xn <∞.

Sufficiency: suppose X satisfies the condition above. If X is not
complete, then ∃(xn)n∈N ⊆ X that is Cauchy but has no limit in X.
Now, select a subsequence of (xn)n∈N, say

(
xnj

)
j∈N such that

∀j ∈ N
∥∥xnj+1 − xnj

∥∥ < 2−j .

Define y : N→ X, j 7→ xnj+1 −xnj , then (yn)n∈N is a Cauchy sequence,
satisfying

∀j ∈ N ∥yj∥ < 2−j .

Therefore, ∼n≥1 ∥yj∥ < ∞. Then X satisfies the condition, which
implies that

∑
n≥1 yn < ∞. Equivalently, limj xnj

exists in X. While
(xn)n∈N is Cauchy, so limn xn = limj xnj

exists, that’s a contradiction
(see how we selected (xn)n∈N).
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3.2 Lecture 3-2
Recall

1. Lp(Ω)(1 ≤ p ≤ ∞) is complete. The outline of proof for p < ∞
is here:

Step 1. Show that if (fn)n∈N is Cauchy (in norm), then (fn)n∈N
is Cauchy in measure.

Step 2. Show that (fn)n∈N is Cauchy in measure, then (fn)n∈N
has a subsequence (fnj

)j∈N that converges to a measurable
function f µ-a.e..

Step 3. Use Fatou’s lemma to show that (fnj
)j∈N

∥ ∥p−−−→ f .

Step 4. Show that (fn)n∈N
∥ ∥p−−−→ f and f ∈ Lp

2. About quotient space. Given a normed space (X, ∥ ∥) and a closed
subspace X0 ↪→ X. We can define the quotient space

X⧸X0
:= {[x] = x+X0 : x ∈ X},

whose norm is

∥[x]∥ = inf
y∈X0

∥x− y∥ = inf
y∈[x]
∥y(−0)∥.

The second equality can be verified by change y ∈ [x] ⇐⇒ y =
x+ x0, x0 ∈ X0.

3. Norm and semi-norm (p, p(x) = 0 ≠⇒ x = 0). Let X be a linear
semi-normed space, with the semi-norm p. A familiar linear semi-
normed is Lp(1 ≤ p ≤ ∞). Let X0 := {x ∈ X : p(x) = 0} ↪→ X.

Claim. X0 is closed subspace of X (so, X⧸X0
is allowed, see

Remark 2.3

Proof. X0 is a linear subspace, since p is a semi-norm.

p is a continuous map, since the triangle inequality holds. Then
N = p−1(0) must be closed.

Now, Remark 2.3 ensures that ∥ ∥ : X⧸X0
, [x] 7→ p(x) is a norm on

X⧸X0
.
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Proof. It should be verified that p is well-defined (though this should
have been proved in Remark 2.3). Suppose [x] = [y], that is [x − y] =
[y − x] = [0]. Since p is a semi-norm, we have the triangle inequality

p(x) + p(y − x) ≥ p(y), p(y) + p(x− y) ≥ p(x),

and [x − y] = [y − x] = 0 =⇒ p(x − y) = p(y − x) = 0, that is
p(x) = p(y). Thus, [x] 7→ p(x) is well-defined. And

(1) ∥[x]∥ = 0 ⇐⇒ p(x) = 0 ⇐⇒ x ∈ X0 = [0] ⇐⇒ [x] =

[0](∈ X⧸X0
).

(2) ∥k[x]∥ = ∥[kx]∥ = p(kx) = |k|p(x) = |k|∥x∥.

(3) ∥[x] + [y]∥ = ∥[x+ y]∥ = p(x+ y) ≤ p(x) + p(y) = ∥[x]∥+ ∥[y]∥.

Above all, ∥ ∥ is a norm on [X].

3.2.1 Completion

In this class, X is a linear noremd space, unless otherwise specified.

Definition (Isometry). Suppose X,Y are two linear normed spaces.
We sayX is isomtetric with Y , if there is a linear surjection T : X → Y
such that

∥Tx∥ = ∥x∥(∀x ∈ X),

or equivalently ∥ ∥Y ◦ T = ∥ ∥X .

Remark 3.3. Isometry is automatically injective, since Tx = 0 ⇐⇒
∥Tx∥ = ∥x∥ = 0 ⇐⇒ x = 0. That is kerT = {0}. Therefore, T is
automatically injective and hence bijective as we want.

Definition (Density). Let (X, ∥ ∥) be a liner normed space and X0 ↪→
X. X0 is said to be dense in X, if X0 = X.

Question 3.1. How to verify X0 = X ?

X0 = X, if

∀x ∈ X∀ε > 0∃xε ∈ X0(∥xε − x∥ < ε.)

And equivalently

∀x ∈ X∀n ∈ N∃xn ∈ X0(∥xε − x∥ < 1/n.)

That is, ∃(xn)n∈N ⊆ X0 that converges to x.

Page 36 of 198



3.2 Lecture 3-2 3 WEEK 3

Theorem 3.2 (Existence of Completion). Let (X, ∥ ∥) be a linear
normed space. There is a Banach space (X̂, ∥ ∥) such that X is isomet-
ric to a dense subspace of X̂.

Remark 3.4. in fact, the completion X̂ is unique up to an isometry
(but the definition of completion should be different).

Definition (Completion). A pair (X̂, ι) is called a completion of X, if
ι : X → X̂ satisfies ∀x ∈ X : ∥ι(x)∥ = ∥x∥ and ι(X) is dense in X̂.

Proof. We will construct a completion of X. Let

E := {(xn)n∈N ⊆ X : (xn)n∈N is a Cauchy sequence},

and define p : E → R, x(= (xn)n∈N) 7→ limn∥xn∥. Here limn∥xn∥ exists
in R, because (xn)n∈N is a Cauchy sequence implies that = (∥xn∥)n∈N
is a Cauchy sequence in R, and R is complete. Moreover, p is a semi-
morn on E . Now define N := p−1(0). Then N ↪→ E and N is closed
(by the continuity of p). Therefore we can consider X̂ := E⧸N , with
the norm ∥ ∥ : X̂ → R, x+N 7→ p(x).

Now, we prove this theorem in 3 steps.

Step 1. X is isometric to a subspace of X̂. Let X0 := {[(x)n∈N] : x ∈
X} and

T : X → X0, x 7→ [(x)n∈N] = (x)n∈N +N,

where (x)n∈N means the constant sequence (x, . . . , x, . . .). That
is, T (x) = (x, . . . , x, . . .)+N . Clearly T is a linear surjection. We
want to show T is isometric, that is ∀x ∈ X, ∥T (x)∥ = ∥x∥. By
definition

∥T (x)∥ = ∥[(x)n∈N]∥ (def of T )

= p
(
(x)n∈N

)
(def of ∥ ∥X̂)

= lim
n
∥x∥ (def of p)

= ∥x∥.

To sum up, T is an isometry as we want.

Step 2. X0 ↪→ X̂ is dense. As discussed above, it suffices to show
that ∀[x] = (x1, . . . , xn, . . .) + N ∈ X̂, there is a sequence in X0

converge to X. Let

[x](m) : N→ [(xm)n∈N] = (xm, . . . , xm, . . .) +N,
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and we prove that the sequence ([x(m)])m∈N is convergent to [x].

lim
m

∥∥∥[x](m) − [x]
∥∥∥

= lim
m
∥(xm − x1, . . . , xm − xn, . . .) +N∥ (def of ±)

= lim
m
p
(
(xm − xn)n∈N

)
(def of ∥ ∥)

= lim
m

lim
n
∥xm − xn∥ (def of p)

= 0. (see remark)

Step 3. X̂ is a Banach space. That is X̂ is complete. Let ([x](n))n∈N
be a Cauchy sequence in X̂. By the density of X0 = TX, we have
a sequence (yn)n∈N ⊆ X such that

∀n ∈ N
∥∥∥T (yn)− [x](n)

∥∥∥ ≤ 1/n.

Claim. (yn)n∈N is a Cauchy sequence.

We find that

∥ym − yn∥
= ∥T (ym)− T (yn)∥

≤
∥∥∥T (ym)− [x](m)

∥∥∥+
∥∥∥[x](m) − [x](n)

∥∥∥+
∥∥∥T (yn)− [x](n)

∥∥∥
≤ 1/m+

∥∥∥[x](m) − [x](n)
∥∥∥+ 1/n.

Apply lim supm,n on both sides and we have

lim sup
m,n

∥ym − yn∥ ≤ 0.

Therefore, (yn)n∈N is Cauchy, and (yn)n∈N ∈ E . Now we show
that ([x](n))n∈N → [y] = (y1, . . . , yn, . . .) + N . By definition of
∥ ∥X̂

∥[x]m − [y]∥ ≤ ∥[x]m − T (ym) + T (ym)− [y]∥
≤ ∥[x]m − T (ym)∥+ ∥T (ym)− [y]∥
≤ 1/m+ p

(
(yn − ym)n∈N

)
= 1/m+ lim

n
∥yn − ym∥,
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and let m→∞, we have

lim sup
m
∥[x]m − [y]∥ ≤ lim sup

m
1/m+ lim sup

m
lim
n
∥yn − ym∥.

The second limit must be 0, since limm limn∥yn − ym∥ = 0 (see
remark) .

Remark 3.5. Here we explain why limm limn∥xm − xn∥ = 0. We may
want to write: suppose limn xn = x, then

lim
m

lim
n
∥xm − xn∥ = lim

m
∥xm − x∥ = 0,

where the first equality is using the continuity of ∥ ∥ and the second
equality follows from the definition of limn xn = x. Everything makes
sense, except limn xn = x. Notice that is a sequence in X and none
said that X is complete.

So, why limm limn∥xm − xn∥ = 0 holds? It suffices to show that we
have

lim
m

lim
n
d(xm, xn) = lim

m,n
d(xm, xn) = 0.

whenever (xn)n∈N is Cauchy. See https://math.stackexchange.com/
a/633595/1061247.
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4 Week 4

4.1 Lecture 4-1
Recall

No recall today.

4.1.1 Exercise course

We have only 3 exercises this course.

Question 4.1. Let (X, ∥ ∥) be a linear normed space, X0 ↪→ X. If X
is complete and X0 is closed then X0 is complete.

Question 4.2. Let (X, d) be a metric space. T : X → X such that
∃λ ∈ (0, 1)

d(T (x), T (y)) ≤ λd(x, y),∀x, y ∈ X.

Prove that ∃!x0 ∈ X such that Tx0 = x0.

Remark 4.1. This result doesn’t hold when λ = 1. To see this, con-
sider

(X, d) = ([0,∞), d), T : X → X,x 7→
√
1 + x2.

And completeness is necessary too, consider (X, d) = ((0,∞), d) and
T : X → X,x 7→ x/2. Other examples can be found.

Question 4.3. Let (X, ∥ ∥) be a linear normed space. Then X is a
Banch space if and only if for each closed decreasing non-empty sub-
sets sequence (An)n∈N,

⋂
n≥1An is a singleton set whenever we have

limn diam(An) = 0.

There are answers in the next section.
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4.2 Lecture 4-2
Recall

For all l.n.s (X, ∥ ∥), there is a Banach space X̂ such thatX ∼= X0 ↪→ X̂,
where X0 is a dense subspace of X̂. It’s ok to say X = X0 ↪→ X̂, and
hence X = X̂. The proof has 3 steps: construction of X̂, embedding
X to X̂ and showing the completeness.

Remark 4.2. In the final exam and Phd qualifying exam, stating this
theorem and its proof is common.

Review of exercise class

Here are the proofs of the questions of the exercise class.

Proof of Question 4.1. Suppose (xn)n∈N ⊆ X0 is a Cauchy sequence
in X0, then (xn)n∈N is Cauchy in X. X is complete so ∃x ∈ X such
that (xn)n∈N → x. Now, X0 is closed and hence x ∈ X0. Thus,
(xn)n∈N → x ∈ X0. That is every Cauchy sequence in X0 is convergent
to some point x ∈ X0, which is equivalent to X0’s completeness.

Proof of Question 4.2. Let a be an arbitrary point in X. Define a
sequence inductively:

(xn)n∈N : N 7→ X,n 7→ xn :=

{
a, n = 1;

T (xn−1), n ≥ 2.

Then (xn)n∈N is Cauchy, because for all n ≥ 2

d(xn+1, xn) = d
(
T (xn), T (xn−1)

)
≤ λ(xn, xn−1).

By induction, we have d(xn+1, xn) ≤ λn−1d(x2, x1), and hence∑
n≥1

d(xn+1, xn) ≤
∑
n≥1

λn−1d(x2, x1) =
1

1− λ
d(x2, x1) <∞.

Therefore, the sequence (Sn)n∈N is Cauchy, where

S : N→ R, n 7→ Sn :=

n∑
j=1

d(xj , xj+1).

The triangle inequality implies that

∀m,n > 1
(
Sm∨n − Sm∧n−1 ≥ d(xm, xn)

)
,
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which ensures that (xn)n∈N is Cauchy ( let S0 = 0 and then the inequal-
ity above always holds ). By the completeness of X, ∃!x0 ∈ X such
that (xn)n∈N → x. Now, the continuity ( from d(T (x), T (y)) ≤ λd(x, y)
) of T implies

T (x0) = lim
n
T (xn) = lim

n
xn+1 = x0.

This proves the existence. Supppose there is y ∈ X such that T (y) = y,
then

d(y, x0) = d(T (y), T (x0)) ≤ λd(y, x0).

λ < 1 implies that d(y, x0) = 0. Equivalently, x0 = y. This proves the
uniqueness.

Proof of Question 4.3. I think this proof is similar to the proof of
[5, Chapter 5, Thm 2].

Necessity: suppose X is a Banach space. Given a closed decreasing
non-empty subsets sequence (An)n∈N, choose xn ∈ An for each n ∈ N.
This is possible since ∀n ∈ N An ̸= ∅. Since (An)n∈N is decreasing, we
have

∀m,n ∈ N(xm ∈ Am∧n, xn ∈ Am∧n),

and hence

d(xm, xn) ≤ diamAm∧n → 0(m,n→∞).

Therefore, (xn)n∈N is a Cauchy sequence. Then the completeness of
X ensures that ∃a ∈ X such that (xn)n∈N → a. ∀n ∈ N, since An is
closed and xj ∈ An for all except for finite j ∈ N, we have a ∈ An.
Therefore, a ∈

⋂
n≥1An. Clearly

⋂
n≥1An cann’t have more than 1

elements. If so, ∃y ∈ An∀n ∈ N and hence diam(An) ≥ d(x, y) ≥ 0.
That’s a contradiction.

Sufficiency: suppose X satisfies the condition above. Let (xn)n∈N
be a Cauchy sequence in X, define (An)n∈N as follows

∀n ∈ N, An := {xm ∈ X : m ≥ n}.

Then (An)n∈N satisfies the condition for set sequence: clearly (An)n∈N
is decreasing, and diam(An) = diam(A) → 0 since (xn)n∈N is Cauchy.
The reason of diam(An) = diam(An) is written in remark. Therefore,
∃!a ∈

⋂
n≥1An. Now, it suffices to show that (xn)n∈N → a. This

follows from
d(xn, a) ≤ diam(An)→ 0(n→∞).
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Remark 4.3. ∀n ∈ N, we want to show that diam(An) = diam(An).
Since n is fixed, we can omit the index. Given A ⊆ X and ε > 0,
∀x, y ∈ A, there is xε, yε ∈ A such that

∥x− xε∥ < ε/2, ∥y − yε∥ < ε/2.

Therefore

∥x− y∥ ≤ ∥x− xε∥+ ∥xε − yε∥+ ∥yε − y∥ ≤ ∥xε − yε∥+ ε,

and use ∥xε − yε∥ ≤ diam(A),

∥x− y∥ ≤ diam(A) + ε.

Since x, y ∈ A are arbitrary, we have

diam(A) ≤ diam(A) + ε.

And ε is arbitrary, so

diam(A) ≤ diam(A).

The reversed inequality is trivial.

4.2.1 Banach Fixed-point Theorem

Here we introduce a classical result about Banach spaces.

Definition (Contraction mapping). Given a metric space (X, d). Then
a mapping T : X → X is called a contraction if ∃λ ∈ (0, 1) such that
d(T (x), T (y)) ≤ λd(x, y).

Remark 4.4. Every linear normed space (X, ∥ ∥) has the natural
metric d(x, y) = ∥x− y∥ and hence a contraction on (X, ∥ ∥) means
T : X → X, such that ∃λ ∈ (0, 1),∀x, y ∈ X

∥T (x)− T (y)(̸= T (x− y))∥ ≤ λ∥x− y∥.

The ̸= above means that T may not be a linear map.

It is easy to verify that each contraction is continuous.

Theorem 4.1 (Banach fixed-point theorem). Suppose (X, d) is a com-
plete metric space and T is a contraction on X. Then ∃!x0 ∈ X such
that Tx0 = x0.

Proof. See the the proof of the second question.
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Let’s have some applications. Suppose X is a Banach space and
U : X → X. We want to solve the equation U(x) = y.

Proof. To use 4.2.1, we should rewrite the equation U(x) = y as
T (x) = x for some T .

U(x) = y ⇐⇒ U(x)− y = 0 ⇐⇒ U(x) + x− y = x,

thus consider T : X → X,x 7→ U(x) + x− y. And

∥T (u)− T (u)∥ = ∥U(u) + u− y − U(v)− v + y∥.

If it’s verified that T is a contraction, then 4.2.1 (Banach Fixed-point
Theorem) implies that T has a unique fixed-point, i.e. U(x) = y has a
unique solution.

Example 18. X is a Banach space, on which U is a contraction. Prove
that U(x) = x+ y has a unique solution.

Proof. We want solve U(x)− x = y, i.e. (U − id)(x)− y = 0. So the
discussion above tells us that we should consider T = U − id+ id−y =
U − y. Let x1 ∈ X be an arbitrary point. Define T (x) = U(x)− y for
all n ∈ N. Then T is a contraction since

∥T (a)− T (b)∥ = ∥U(a)− U(b)∥,

and U is a contraction. Then use Theorem 4.2.1 (Banach Fixed-point
Theorem) and we’re done.

Page 44 of 198



5 WEEK 5

5 Week 5

5.1 Lecture 5-1
In this part, X,Y are supposed to be two linear normed spaces (X, ∥ ∥),
(Y, ∥ ∥).

Recall

A map T : X → Y is said to be continuous, if

∀x ∈ X∀(xn)n∈N
∥ ∥X−−−→ x, (Txn)n∈N

∥ ∥Y−−−→ Tx.

5.1.1 Bounded Linear Operators/Maps

Here is the definition of Bounded linear operators/maps

Definition (Bounded linear operators/maps). T : X → Y is said to
be bounded, if ∃C > 0 such that ∥ ∥Y ◦ T ≤ C∥ ∥X , equivalently
∥Tx∥Y ≤ C∥x∥X , ∀x ∈ X. The set of all bounded linear operators
from X to Y is denoted as B(X,Y ). If Y = X, B(X,X) is also written
as B(X).

Remark 5.1. ∃C > 0 : ∥Tx∥Y ≤ C∥x∥X , ∀x ∈ X is not equivalent to
∀x ∈ X∃C > 0 : ∥Tx∥Y ≤ C∥x∥X .

Remark 5.2. Usually we don’t distinguish map and operator, but a
functional should be distinguished (see the definition of Bounded linear
functional). ■

It is easy to verify: a bounded map is continuous. Then it’s natural
to consider the inverse proposition. To do this, we define bounded sets.

Definition (Bounded set). Suppose A ⊆ X. If ∃M > 0 such that
supx∈A∥x∥ ≤M , then A is said to be bounded.

Remark 5.3. T is a bounded map ⇐⇒ T maps bounded sets to
bounded sets.

Proposition 5.1. The following statements are equivalent.

1. T is continuous;

2. T is continuous at some point x0 ∈ X;

3. T is continuous at 0;
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4. T is bounded.

Proof. We prove in the following order

1 ====⇒ 2~ww ww�
4 ⇐==== 3

1 =⇒ 2: is done automatically.
2 =⇒ 3: Suppose T is continuous at x0, then ∀(xn)n∈N → x0 we

have (Txn)n∈N → Tx0. Now ∀(yn)n∈N → 0, we have (yn+x0)n∈N → x0
since

∥(yn + x0)− x0∥ = ∥yn∥ → 0(n→∞).

Thus, T (yn + x0)→ T (x0) by T ’s continuity at x0 and hence

∥T (yn)− 0∥ = ∥T (yn + x0)− T (x0)∥ → 0.

Therefore, (Tyn)n∈N → 0 as we wanted.
3 =⇒ 4: Given T that is continuous at 0. If T isn’t bounded,

then there is a bounded subset of X, denoted by A, such that TA is
unbounded. Replace A with

⋃
0≤t≤1 tA, still denoted by A. By the

definition of unboundedness:

∀n ∈ N∃xn ∈ A : ∥Txn∥ > n.

Now we want a seuqnce (yn)n∈N ⊆ A satisfying (∥Tyn∥)n∈N is un-
bounded. Take yn = xn/

√
n, and we’re done. Since {yn : n ∈ N} is

a bounded subset of A whose image under T is unbounded. That’s a
contradiction.

4 =⇒ 1: T is bounded, then T is uniformly continuous.

Remark 5.4. There is another proof for 3 =⇒ 4, see the textbook.

Now, we have a set and it’s naturally to consider it’s linear structure
and topology. There is a natural linear structure on B(X,Y ) as follows

+: B(X,Y )× B(X,Y ) → B(X,Y )

(S, T ) 7→ S + T := (x 7→ S(x) + T (x)),

and

· : B(X,Y )×K → B(X,Y )

(S, k) 7→ k · S := (x 7→ k · S(x)).
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Definition (Operator norm). The operator norm on B(X,Y ) is defined
as follows

∥ ∥ : B(X,Y )→ R≥0, T 7→ sup
∥x∥≤1

∥Tx∥.

It’s easy to verify that the operator norm is a norm on B(X,Y ).

Remark 5.5. (B(X,Y ), ∥ ∥) is a linear normed space.

Remark 5.6. Equivalent definitions:

∥T∥ = sup
x ̸=0

∥Tx∥
∥x∥

= sup
∥x∥=1

∥Tx∥.

Proof. Since

sup
x̸=0

∥Tx∥
∥x∥

= sup
x ̸=0

∥∥∥∥ 1

∥x∥
Tx

∥∥∥∥
= sup

x ̸=0

∥∥∥∥T( x

∥x∥

)∥∥∥∥
= sup

∥x∥=1

∥Tx∥

= sup
∥x∥≤1

∥Tx∥

= sup
0<∥y∥≤δ

1

δ
∥Ty∥(y = δx)

≤ sup
0<∥y∥≤δ

1

∥y∥
∥Ty∥

= sup
y ̸=0

∥Ty∥
∥y∥

.

And
sup
x̸=0

∥Tx∥
∥x∥

= sup
y ̸=0

∥Ty∥
∥y∥

,

which ensures that the ≤ above can be replaced with =.

Definition (Bounded linear functional). An element of B(X,K) is
called a linear functional on X. B(X,K) is also called the dual space
of X, denoted by X∗.

Remark 5.7. Discontinuous linear functionals exist (but only when X
is infinite dimensional. See this post).
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Example 19. Fix a = (an)n∈N ∈ ℓ1. Define

T : c0 → ℓ1, x = (xn)n∈N 7→ a · x = (anxn)n∈N. (8)

Show that:

1) T is bounded;

2) ∥T∥ = ∥a∥1.

Proof.

1) Recall that c0 ↪→ ℓ∞ is equipped with the norm ∥ ∥∞ = supN| |.
∀x ∈ c0, we have

∥Tx∥1 = ∥a · x∥1
=

∑
n≥1

|anxn|

≤
∑
n≥1

|an|∥x∥∞

= ∥a∥1∥x∥∞.

Thus pick C = ∥a∥1, we have ∥Tx∥ℓ1 ≤ C∥c∥∞. This means
T ∈ B(c0, ℓ1).

2) We have proved ∥T∥ ≤ ∥a∥1. Thus it suffices to show the reversed
inequality. From the definition of ∥ ∥1

∀ε > 0∃N ∈ N∀n ≥ N :

n∑
j=1

|aj | > ∥a∥1 − ε.

In particular
N∑
j=1

|aj | > ∥a∥1 − ε.

Now consider

c0 ∋ xN := (1, . . . , 1︸ ︷︷ ︸
N terms

, 0, 0, . . .),

whose image under T is

∥TxN∥ =
N∑
j=1

|aj | > ∥a∥1 − ε.
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∥x∥∞ = 1 ensures that

∥T∥ ≥ ∥TxN∥ℓ1 > ∥a∥1 − ε.

ε > 0 is arbitrary, therefore ∥T∥ ≥ ∥a∥1.

Remark 5.8. In fact, c∗0 ∼= ℓ1. Here ∼= means “isometrically isomor-
phic”.

Here is a left exercise:

Exercise 5.1. Consider X = C[0, 1], with the norm x 7→ max[0,1]|x|.
Define the linear functional

f : X → K, x 7→
∫ 1/2

0

x dm−
∫ 1

1/2

xdm.

Here m is the Lebesgue measure on R. Show that:

1) f is a bounded linear functional (i.e. f ∈
(
C[0, 1]

)∗);
2) ∥f∥ = 1.
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5.2 Lecture 5-2
Here is a remark for Exercise 5.1. We want to find x ∈ C[0, 1], ∥x∥ =
1, |f(x)| = 1, i.e. ∫ 1/2

0

xdm = 1/2,

∫ 1

1/2

x dm = −1/2.

But this is impossible, by max[0,1]|x| = 1 and the continuity of x. Now,
consider the approximation of x: ∀ε ∈ (0, 1/2), let

xε : [0, 1]→ R, t 7→


1, t ∈ [0, 1/2− ε]
l(t), t ∈ (1/2− ε, 1/2 + ε)

−1, [1/2 + ε, 1]

,

where l is the unique affine function determined by

l(1/2− ε) = 1, l(1/2 + ε) = −1.

Since |f(xε)| = 1 − ε and |xε| = 1, we have ∥f∥ ≥ 1 − ε. Therefore,
∥f∥ ≥ 1.

5.2.1 Some exercises

Here are exercises for this class.

Exercise 5.2. Given a measure space (Ω,F , µ) and α ∈ L1(Ω). Let

Tα : L∞(Ω)→ L1(Ω), x 7→ α · x,

where α · x means pointwise product. Try to find ∥Tα∥.

Solution: It’s natural to guess that ∥Tα∥ = ∥α∥1. Hölder’s inequality
implies that

∥Tα(x)∥1 = ∥α · x∥1 ≤ ∥α∥1∥x∥∞.

Thus, ∥Tα∥ ≤ ∥α∥1. On the other hand,

L∞(Ω) ∋ x : Ω→ K, ω 7→ 1

then ∥x∥∞ = 1, and Tα(x) = α, hence ∥Tα∥ ≥ ∥α∥1.

Remark 5.9. We have proved this for µ being the counting measure,
see 19.

Fact. A matrix ( with respect to the normal base) T ∈ Kn×n consid-
ered as a linear map T : Kn → Kn, x 7→ Tx is bounded.
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Proof. Since K is equipped with the norm ∥ ∥ : x 7→ (
∑n
j=1|xj |

2
)1/2

that is not very convenient. It ban be proved that ∥ ∥∞ ≤ ∥ ∥ ≤√
n∥ ∥∞. So it suffices to show that T : (Kn, ∥ ∥∞) → (Kn, ∥ ∥∞) is

continuous. Suppose T = (ai,j)n×n. Now ∀x = (x1, . . . , xn)
t ∈ Kn

∥Tx∥∞ =

∥∥∥∥∥∥
( n∑
j=1

a1,jx1, . . . ,

n∑
j=1

an,jxn

)t∥∥∥∥∥∥
∞

≤
n∑
k=1

∥∥∥∥∥∥
( n∑
j=1

a1,jx1δk,j , . . . ,

n∑
j=1

an,jxnδk,j

)t∥∥∥∥∥∥
∞

≤
n∑
k=1

n∑
j=1

∥∥∥∥(a1,jx1δk,j , . . . , an,jxnδk,j)t∥∥∥∥
∞

=

n∑
k=1

n∑
j=1

|ak,j | · |xk|

≤
( n∑
k=1

n∑
j=1

|ak,j |
)
∥x∥∞.

(9)

Thus, let C :=
∑n
j=1

∑n
k=1|ak,j | and we have proved ∥ ∥∞◦T ≤ C∥ ∥∞,

i.e. T is bounded.

Claim. Each finite dimensional linear normed space X is linear home-
omorphic to Kn.

Proof. Suppose K is equipped with ∥ ∥∞ and {α1, . . . , αn} is a base
of X. Thus there is a map

φ : Kn → X, (x1, . . . , xn)
t 7→

n∑
j=1

xjαj ,

which is a bijection from definition of base. And φ is bounded, since

∥φ(x1, . . . , xn)∥X ≤
n∑
j=1

|xj |∥αj∥X

≤
( n∑
j=1

∥αj∥X
)
∥(x1, . . . , xn)∥∞.

(10)

Let C :=
∑n
j=1∥αj∥X , then ∥ ∥∞ ◦φ ≤ C∥ ∥∞ and thus φ is bounded.
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Now we prove that Φ := φ−1 is bounded. Given (x1, . . . , xn) ∈ Kn
such that ∥∥∥∥∥∥

n∑
j=1

xjαj

∥∥∥∥∥∥
X

≤ 1,

i.e. an element in the unit ball of X. We prove that Φ(
∑n
j=1 xjαj) =

(x1, . . . , xn) lies in some ball of Kn. {α1, . . . , αn} is a base for X, thus
αj ̸= 0(∀j) and let δ = min1≤j≤n∥αj∥ > 0. Now

1 ≥

∥∥∥∥∥∥
n∑
j=1

xjαj

∥∥∥∥∥∥
X

≥
n∑
j=1

|xj |∥αj∥ ≥ δ
n∑
j=1

|xj | ≥ δ
∥∥(x1, . . . , xn)t∥∥∞.

Therefore ∥(x1, . . . , xn)t∥∞ ≤ 1/δ, i.e.
∥∥∥Φ(∑n

j=1 xjαj)
∥∥∥
∞
≤ 1/δ. This

means that Φ is bounded.

Exercise 5.3. Given a measure space (Ω,F , µ) and α ∈ L∞(Ω). Let
p be a real number fixed in (1,∞). Define

Tα : Lp(Ω)→ Lp(Ω), x 7→ α · x.

Try to find ∥Tα∥.

Proof. Let T denotes Tα for short. First, ∥T∥ ≤ ∥α∥∞: since |α(ω)| ≤
∥α∥∞ for a.e. ω ∈ Ω, and

∥Tx∥p =
(∫

Ω

|α|p|x|p dµ
)1/p

≤ ∥α∥∞
(∫

Ω

|x|p dµ
)1/p

= ∥α∥∞∥x∥p.

The reversed inequality needs a condition: “ Suppose Lp ̸= {0}.
Then ∀A ∈ F such that µ(A) = ∞, ∃A0 ⊆ A such that 0 < µ(A0) <
∞”. Now, ∀ε > 0, consider the set Eε := {ω ∈ Ω : |α(ω)| > ∥α∥∞ − ε}.

Case 1: µ(Eε1) < ∞ for some ε1 > 0. Since 0 < a < b implies
Ea ⊆ Eb, by considering ε < ε1 we have µ(Eε) < ∞. Then
χEε ∈ Lp. And hence

∥T∥ ≥ ∥TχEε
∥

∥χEε∥
≥

(∥α∥∞ − ε)
( ∫

Eε
χpEε

dµ
)1/p

∥χEε∥
= ∥α∥∞ − ε.

Since ε ∈ (0, ε1) is arbitrary, we have ∥T∥ ≤ ∥α∥∞.
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Case 2: µ(Eε) =∞ for all ε > 0. If ∃Aε ⊆ Eε such that 0 < µ(Aε) <
∞ and hence χAε

∈ Lp, then

∥T∥ ≥ ∥TχAε
∥

∥χAε∥
≥

(∥α∥∞ − ε)
( ∫

Aε
χpAε

dµ
)1/p

∥χAε∥
= ∥α∥∞ − ε.

Since ε > 0 is arbitrary, we have ∥T∥ ≤ ∥α∥∞.

For the case that there is some ε > 0 such that µ(Eε) = ∞ and
µ(A) ∈ {∞, 0} for all A ⊆ Eε, we can’t prove that ∥T∥ ≥ ∥α∥∞
and there is a example such that ∥T∥ ≠ ∥α∥∞ in this case.

Example 20. Consider the measure space (N,P(N), ν) where µ
is defined as the unique measure such that

ν({1}) =∞, ν(A) = card(A)(∀1 /∈ A),

where card(A) is the number of elements of the set A when A is
finite, and ∞ when A is infinite. Now the function α = χ{1} ∈
L∞(N,P(N), ν) and ∀f ∈ Lp(N,P(N), ν) we have f(1) = 0.
Therefore

Tα : Lp(N,P(N), ν)→ Lp(N,P(N), ν), f 7→ α · f

is just a zero operator and hence ∥Tα∥ = 0 ̸= ∥α∥∞.

Therefore, the operator

T : L∞(N,P(N), ν)→ B
(
Lp(N,P(N), ν)

)
has a nontrivial kernel kerT ∋ α ̸= 0.

Page 53 of 198



6 WEEK 6

6 Week 6

6.1 Lecture 6-1
6.1.1 Compactness, Relative Compactness and Total Bound-

edness

Definition (Open Cover). Given a topological space (X, T ). A ⊆ X
is said to have an open cover (Oi)i∈I if

A ⊆
⋃
i∈I

Oi.

Definition (Compact). A topological space (X, T ) is said to be com-
pact, if each open cover of X has a finite subcover.

Remark 6.1. Compactness is topological invariant.

Definition (Relative Compactness). Let (X, T ) be a topological space.
A subset F of (X, T ) is said to be relatively compact, if its closure F
is compact.

Definition (Sequential Compactness). Let (X, T ) be a topological
space. A subset F of (X, T ) is said to be sequentially compact, if every
sequence (xn)n∈N ⊆ A there is a subsequence (xnk

)k∈N ⊆ (xn)n∈N such
that (xnk

)k∈N → x ∈ A.

Definition (ε-net). Let (X, d) be a metric space. E ⊆ X is called an
ε-net of A, if A ⊆

⋃
x∈E B(x, ε).

Definition (Total Boundedness). Let (X, d) be a metric space. A ⊆ X
is said to be totally bounded, if ∀ε > 0 there is a finite ε-net of A.

Remark 6.2. This is not a topological invariant (since it needs a met-
ric), but is invariable under bi-Lipschitz mappings.

Now, we will compare the following notions in metric space: com-
pact sets, relatively compact sets and totally bounded sets.

Theorem 6.1. Let (X, d) be a metric space and A ⊆ X. The following
statements are equivalent:

1. A is compact.

2. A is sequentially compact.
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Proof. 1 ⇒ 2: Suppose A is compact while not sequentially compact.
Then ∃(xn)n∈N ⊆ A such that ∀a ∈ A, a is not a limit point of (xn)n∈N.
Thus

∀a ∈ A∃εa > 0(∃Na ∈ N ∀n ≥ Na d(xNa
, a) > εa).

Now we have an open cover of A, {B(a, εa) : a ∈ A}. Since A is
compact, there is a1, . . . , am ∈ A such that

A ⊆
n⋃
k=1

B(ak, εak),

Let N := Na1 ∨ · · ·Nam then xN /∈ B(ak, εak)∀1 ≤ k ≤ m. But
xN ∈ A =

⋃m
k=1B(xk, εak). That’s a contradiction.

2 ⇒ 1: Let (Oi)i∈I be an open covering of A. First, we prove that
∃λ > 0 such that ∀0 < r < λ∀x ∈ A, B(x, r) ⊆ Oi for some i ∈ I ( This
constant λ is called an Lebesgue number of the open covering (Oi)i∈I).

If there is no Lebesgue number for (Oi)i∈I , then ∀n ∈ N∃xn ∈
A such that B(xn, 1/n) is not contained in any element of (Oi)i∈I .
Therefore we have a sequence (xn)n∈N. 2 ensures that (xn)n∈N has a
convergent subsequence (xnk

)k∈N with its limit x0. Notice that x0 ∈
Oi0 for some i0 ∈ I and Oi0 is open, so ∃r > 0 such that B(x0, r) ⊆ Oi0 .
From the definition of convergence, ∃K such that ∀k ≥ K d(xnk

, x0) <
r/2. WLOG, suppose nK > 2/r. Now, ∀y ∈ B(xnK

, 1/nK), we have

d(y, x0) ≤ d(y, xnK
) + d(xnK

, x0) <
1

nK
+
r

2
< r.

This means B(xnK
, 1/nK) ⊆ B(x0, r). Since B(x0, r) ⊆ Oi0 , we get

B(xnK
, 1/nK) ⊆ Oi0 . That’s a contradiction with the selection of

(xn)n∈N. Therefore, there is a Lebesgue number.
Let λ be a Lebesgue number, whose existence is proved above.

Then A has an open cover {B(x, λ/2) : x ∈ A}. Take arbitrary
x1 ∈ A. If A ⊆ B(x1, λ/2) we’re done. Else, it’s possible to take
x2 ∈ A \ B(x1, λ/2). Similarly we can take x3, . . . , xn, . . . if possible.
This process must end in finite steps, i.e. we can only get a finite
sequence as above. If we get a infinite sequence (xn)n∈N as above, then

d(xm, xn) ≥
λ

2
,∀m ̸= n.

That’s a contradiction since A is supposed to be sequentially compact.
Suppose we get a sequence having only m terms and then

A ⊆
n⋃
k=1

B
(
xk,

λ

2

)
.
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Recall the selection of λ, xk ensures that B(xk, λ/2) lies in an element
of (Oi)i∈I for each k. Therefore (Oi)i∈I has a finite subcover.

Theorem 6.2. Let (X, d) be a metric space and A ⊆ X. The following
statements are equivalent:

1. A is relatively compact.

2. ∀(xn)n∈N ⊆ A, ∃(xnk
)k∈N ⊆ (xn)n∈N such that (xnk

)k∈N
d−→ x ∈

X.

Remark 6.3. Notice that (xnk
)k∈N

d−→ x ∈ X but not (xnk
)k∈N

d−→ x ∈
A.

Proof. We use Theorem 6.1 to prove this theorem.
1 ⇒ 2: Suppose 1 holds, then A is compact, Theorem 6.1 implies

A is sequentially compact and hence 2 holds.
2 ⇒ 1: Suppose 2 holds, then clearly x ∈ A. Now we want to

prove that A is compact. 1 means that it suffices to show that A is
sequentially compact. Given an arbitrary sequence (xn)n∈N ⊆ A, we
want to show that there is a subsequence xnkk∈N → x for some x ∈ X.
Since (xn)n∈N ⊆ A doesn’t mean that (xn)n∈N ⊆ A, we should find a
sequence (yn)n∈N ⊆ A such that xnkk∈N → x whenever ynkk∈N → x.
By the property of closure: we can define (yn)n∈N ⊆ A such that

∀n ∈ N, yn :=

{
xn, xn ∈ A;
x′n, xn /∈ A, x′n ∈ A, d(x′n, xn) < 1/n.

Now 2 implies that ∃(ynk
)k∈N such that (ynk

)k∈N → x ∈ X, and hence
(xnk

)k∈N → x ∈ X as we want.

Theorem 6.3. Let (X, d) be a metric space and A ⊆ X. The following
statements are equivalent:

1. A is totally bounded.

2. ∀(xn)n∈N ⊆ A, ∃(xnk
)k∈N ⊆ (xn)n∈N such that (xnk

)k∈N is a
Cauchy sequence.

Proof. 1⇒ 2: proof given by our professor is omitted here and should
be found in your notes. And the “another proof” is not very different
from this.

“Another proof” of 1 ⇒ 2: suppose A is totally bounded. Given an
arbitrary sequence (xn)n∈N ⊆ A. WLOG, suppose (xn)n∈N has infinite
distinct terms, else we’re done. ∀ε > 0 there is a finite ε-net of A.
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Thus for each k ∈ N there is a finite ε-net Fk for A. Let J0 = N
and define J0 ⊇ J1 ⊇ J2 ⊇ · · · inductively as follows. Suppose Jk is
defined. Since Fk+1 is finite and Jk is infinite, for each n ∈ Jk there is
an element pk+1 ∈ Fk+1 such that the ball B(pk+1, 1/(k+ 1)) contains
infinite elements of {xn : n ∈ Jk}. Let

Jk+1 := {n ∈ Jk : d(xn, pk+1) < 1/(k + 1)}.

Now, let n1 ∈ J1 be an arbitrary element. And inductively select
nk+1 ∈ Jk+1 such that nk+1 > nk. We have defined a subsequence
(xnk

)k∈N. ∀ε > 0∃N ∈ N such that 2/N < ε and hence ∀j, k ≥ N we
have d(xnj , pN ) < 1/nj < 1/N , d(xnk

, pN ) < 1/N . Therefore

d(xnk
, xnj

) ≤ d(xnk
, pN ) + d(xnj

, pN ) < 1/N + 1/N < ε

by the triangle inequality. Now (xnk
)k∈N is a subsequence of (xn)n∈N

that is Cauchy.
2 ⇒ 1: Suppose A satisfies 1. If A isn’t totally bounded, then

∃ε0 > 0 such that A has no finite ε0-net. Thus pick an arbitrary point
x1 ∈ N and X \ B(x1, ε0) ̸= ∅ (since A has no finite ε0-net). Pick
an arbitrary point x2 ∈ X \ B(x1, ε0) and pick x3 similarly. We have
defined a sequence (xn)n∈N inductively, satisfying

d(xm, xn) ≥ ε0(∀m ̸= n),

which implies that (xn)n∈N has no Cauchy subsequence. That’s a con-
tradiction. Therefore, A must be totally bounded.

Corollary 6.4. Let (X, d) be a metric space and A ⊆ X. Then

1. A is compact =⇒ A is relatively compact =⇒ A is totally
bounded.

2. A is compact =⇒ A is closed and bounded.

3. Suppose A is closed. Then A is compact ⇐⇒ A is relatively
compact.

4. Suppose X is complete. Then A is relatively compact ⇐⇒ A is
totally bounded.

5. X is compact ⇐⇒ X is complete and totally bounded.

6. X = Kn, then A is bounded ⇐⇒ A is totally bounded ⇐⇒ A
is relatively compact.
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Proof. We imply some results from the point set topology course.
1: (X, d) is a metric space and hence a Hausdorff space. Compact

sets in Hausdorff space is closed. Therefore A = A and A is compact,
i.e. A is relatively compact. The definition of compactness ensures that
A is totally bounded.

2: A is closed as talked above. To see that A is bounded, consider
an arbitrary point x0 ∈ X and the open covering

{B(x, r) : r > 0}. (11)

(11) is an open cover of A. Compactness of A means that there is a
finite subcover of (11), which ensures that A is bounded.

3: Since A = A.
4: A is totally bounded if and only if for all (xn)n∈N ⊆ A, (xn)n∈N

has a Cauchy subsequence i.e. a convergent subsequence. Therefore,
A is totally bounded if and only if A is sequentially compact i.e. A is
compact.

5: Necessity follows from 1 and 6.3. Apply 4 for sufficiency.
6: Heine-Borel theorem [5, Chapter 5, Thm 14] implies this.

Remark 6.4. The inverse proposition of 2 is incorrect. Consider
(R, d1) where d1 is defined as

d1 : R× R→ R, (x, y) 7→ |ϕ(x)− ϕ(y)|,

where
ϕ : R→ (−1, 1), x 7→ x

1 + |x|
.

Then (R, d1) has a closed and bounded subset that is not compact: R,
itself. But clearly (R, d1) has the same topology as the usual topological
space R. Therefore (R, d1) is not compact since the open covering
{(n,−n) : n ∈ N} has no finite subcover.

In fact, (R, d1) ∼= R. Here ∼= means there is a homeomorphism.
Thus “boundedness” is not topological invariant.
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6.2 Lecture 6-2
Recall

Let X,Y be two linear normed spaces.

• T : X → Y is said to be bounded/continuous, if ∃C > 0 such
that ∥ ∥Y ◦ T ≤ C∥ ∥X (i.e. ∥T∥ ≤ C ).

• X ∼= Y means that X is isometric to Y , i.e. ∃T : X → Y such
that T is linear, surjective and satisfies ∥ ∥Y ◦ T = ∥ ∥X .

Definition (Isomorphism). X is isomorphic to Y , if there is a linear
surjection T and C1, C2 > 0 such that

C1∥ ∥X ≤ ∥ ∥Y ≤ C2∥ ∥X ,

and this T is called an isomorphism from X to Y . X is isomorphic
to Y is denoted by X ≃ Y .

Remark 6.5. In the category VectK, an isomorphism is a linear bijec-
tion and vice versa. In the category Nor: Ob(Nor) are normed spaces
and Mor(Nor) are bounded linear maps. An isomorphism in Nor is a
linear homeomorphism. In the category Nor1: Ob(Nor1) are normed
spaces and Mor(Nor1) are contraction operators. An isomorphism in
Nor1 is an isometry. In this notes, X ∼= Y means that X is isometric
to Y and X ≃ Y means that X is isomorphic to Y .

6.2.1 Finite Dimensional Linear Normed Spaces

Definition (Equivalent norms). Let (X, ∥ ∥1), (X, ∥ ∥2) ∈ Ob(Nor).
We say ∥ ∥1 is equivalent to ∥ ∥2, if ∃a, b > 0 such that

a∥ ∥2 ≤ ∥ ∥1 ≤ b∥ ∥2.

Remark 6.6. ∼ is an equivalent relation between norms on X, as you
should verify.

See the definition of Isomorphism and we get ∥ ∥1 ∼ ∥ ∥2 if and
only if

id : (X, ∥ ∥2)→ (X, ∥ ∥1), x 7→ x

is an isomorphism.

Example 21. Consider (Rn, ∥ ∥2) and (Rn, ∥ ∥∞). Clearly

∥ ∥∞ ≤ ∥ ∥2
√
n∥ ∥∞,

and hence ∥ ∥2 ∼ ∥ ∥∞.
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Theorem 6.5 (Classification of Finite Dimensional Spaces). Let X ∈
Ob(Nor) with dim(X) = n <∞, then X ≃ Kn.

Proof. WLOG, suppose Kn is equipped with ∥ ∥∞. Consider

φ : Kn → X, (x1, . . . , xn) 7→
n∑
j=1

xjαj ,

where {α1, . . . , αn} is a base of X. φ is proved to be continuous because

∥φ(x1, . . . , xn)∥X ≤
n∑
j=1

|xj |∥αj∥

≤
n∑
j=1

∥(x1, . . . , xn)∥∞∥αj∥

= ≤
( n∑
j=1

∥αj∥
)
∥(x1, . . . , xn)∥∞.

Then let

Φ: Kn → R, (x1, . . . , xn) 7→ ∥φ(x1, . . . , xn)∥X .

Now Φ = ∥ ∥X ◦ φ is continuous. Hence Φ obtains a minimal value on
S = {x ∈ Kn : ∥x∥∞ = 1}. Suppose δ = min Φ|S (such δ exists, since
S is compact). Then δ > 0 since ∥ ∥X is a norm and 0 /∈ S. Now we
have ∀0 ̸= (x1, . . . , xn) ∈ Kn,

Φ(x1, . . . , xn) = ∥(x1, . . . , xn)∥∞Φ
( (x1, . . . , xn)

∥(x1, . . . , xn)∥∞

)
≥ δ∥(x1, . . . , xn)∥∞,

i.e.
∥φ(x1, . . . , xn)∥X ≥ δ∥(x1, . . . , xn)∥∞. (12)

(12) holds for ∀(x1, . . . , xn) ∈ Kn and means that φ−1 is continuous.
Above all, φ is a linear homeomorphism, i.e. an isomorphism.

Remark 6.7. Consider min Φ|S is natural, just like

∥T∥ = sup
∥x∥X=1

∥Tx∥Y .

Corollary 6.6. Let (X, ∥ ∥) ∈ Ob(Nor).

1) dimX = n implies that X is complete.
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2) X is an arbitrary linear normed space and X0 ↪→ X such that
dim(X0) <∞. Then X0 is closed.

3) dim(X) <∞ implies that L(X) = B(X).

Theorem 6.5 implies that: if dim(X) <∞, then A ⊆ X is compact
if and only if A is closed and bounded. But it is not true for some (all,
in fact, see Theorem 6.8) infinite dimensional normed spaces.

Example 22 (A closed bounded set that is not compact). Consider ℓ2
and its base {en : n ∈ N}, where

en := ( 0, . . . , 0︸ ︷︷ ︸
n−1 terms

, 1, 0, . . .),∀n ∈ N.

Proof. B := {en : n ∈ N} is what we want.

• B is closed: consider an arbitrary convergent sequence (xn)n∈N ⊆
B, then there is some m ∈ N such that xn = em for all but finite
many n ∈ N, because ∥em − en∥ =

√
2δmn . Thus (xn)n∈N → em ∈

B.

• B is bounded: since diam(B) =
√
2.

• B is not compact: since (en)n∈N ⊆ B is a sequence having no
convergent subsequence. Thus B is not sequentially compact and
hence not compact.

Lemma 6.7 (Riesz). Let X be a linear normed space and X0 ↪→
X,X0 ̸= X is a closed subspace. Then

∀ε ∈ (0, 1)∃xε ∈ X(∥xε∥ = 1 ∧ d(xε, X0) > ε.)

Proof. Taking arbitrary x′ ∈ X \ X0, then d(x′, X0) > 0. Let d =
d(x′, X0), now d/ε > d and hence

∃x̄ ∈ X0∥x̄− x′∥ < d/ε.

Taking xε := x̄−x′

∥x̄−x′∥ , then ∥xε∥ = 1 and ∀x ∈ X0

∥xε − x∥ =
∥∥∥∥ x̄− x′ − ∥x̄− x′∥x∥x̄− x′∥

∥∥∥∥
=

1

∥x̄− x′∥
∥x̄− x′ − ∥x̄− x′∥x∥

> ε.

The last inequality comes from ∥x̄− x′∥ < d/ε and ∥y − x′∥ ≥ d, where
y = x̄− ∥x̄− x′∥x ∈ X0.
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Theorem 6.8. Let X be a linear normed space and B(0, 1) is its closed
unit ball. The following statements are equivalent:

1. X is finite dimensional.

2. ∂B(0, 1) is compact.

3. B(0, 1) is compact.

4. ∀A ⊆ X, A is closed and bounded if and only if A is compact.

Proof. We want to show that

1 ⇐==== 2ww� ~ww
4 ====⇒ 3

We get 1 =⇒ 4 from Theorem 6.5, 4 =⇒ 3 is trivial and 3 =⇒ 2
since a closed subset of a compact set is compact.

It suffices to prove that 2 =⇒ 1. Consider proof by contradiction.
Suppose dim(X) = ∞. Let ∀x1 ∈ X such that x1 ̸= 0. Consider
the closed linear subspace span {x1} (this is a closed linear subspace,
see the third corollary of Theorem 6.5). From Lemma 6.7, there is
x2 ∈ X \ span {x1} such that ∥x2∥ = 1 and d(x2, span {x1}) > 1/2.
Then consider the closed linear subspace span {x1, x2} ( that is closed
by the same reason as span {x1}), span {x1, x2} ̸= X and Lemma 6.7
implies that there is x3 ∈ X \ span {x1, x2} such that ∥x3∥ = 1 and
d(x3, span {x1, x2}) > 1. Thus, We can define a sequence (xn)n∈N ⊆
∂B(0, 1) inductively such that

∀m ̸= n, d(xm, xn) > 1/2.

Therefore, ∂B(0, 1) is not sequentially compact and hence not compact.
Above all, X is infinite dimensional implies that ∂B(0, 1) is not

compact. Thus 2 =⇒ 1.

Summary

We have proved that

1. dimX <∞ =⇒ X ≃ Kn and hence:

(a) The space X is complete;

(b) Every finite dimensional subspace of an arbitrary linear no-
rmed space is closed;
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(c) Two spaces coincide: L(X) = B(X).

2. Riesz’s Lemma =⇒ Theorem 6.8 which gives equivalent descrip-
tions of finite dimensions.
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7 Week 7

7.1 Lecture 7-1
7.1.1 Construct more Linear Normed Spaces

Let (Xi, ∥ ∥Xi
) ∈ Ob(Nor), 1 ≤ i ≤ n. Define

n
i=1Xi :=

n∏
i=1

Xi

with operations

k(x1, . . . , xn) + l(y1, . . . , yn) = (kx1 + ly1, . . . , kxn + lyn).

∀p ∈ [1,∞], define a norm on X = n
i=1Xi

∥ ∥X : X → R, (x1, . . . , xn) 7→
( n∑
i=1

∥xi∥pXi

)1/p

.

At the case of p =∞, ∥x∥ should be interpreted like ∥ ∥∞. To see that
∥ ∥ is a norm, it suffices to show that

1. it’s positive definite;

2. it’s homogeneous;

3. triangle inequality holds. And this follows from the Minkowski’s
Inequality for ℓp, since

∥x+ y∥ =
( n∑
i=1

∥xi + yi∥p
)1/p

≤
( n∑
i=1

(∥xi∥+ ∥yi∥)p
)1/p

≤
( n∑
i=1

∥xi∥p
)1/p

+
( n∑
i=1

∥yi∥p
)1/p

.

The first inequality comes from the triangle inequality of ∥ ∥X and
the second inequality comes from the Minkowski’s Inequality:

∥(∥x1∥, . . . , ∥xn∥, 0, . . .)∥ℓp + ∥(∥y1∥, . . . , ∥yn∥, 0, . . .)∥ℓp
≥ ∥(∥x1∥+ ∥y1∥, . . . , ∥xn∥+ ∥yn∥, 0, . . .)∥ℓp .

Now, we have some questions
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Question 7.1.

1) Let pi : X → Xi, (x1, . . . , xn) 7→ xi be the projection to the i- coor-
dinate. Show that pi is continuous and ∥pi∥ = 1.

2) X = n
i=1Xi is complete ⇐⇒ all Xi is complete.

Proof.

1) On the one hand: ∀x = (x1, . . . , xn) ∈ X, we have ∥pi(x)∥ = ∥xi∥
and

∥x∥X =
( n∑
i=1

∥xi∥pXi

)1/p

≥ ∥xi∥Xi
.

Thus ∥pi∥ ≤ 1. On the other hand: taking x = (0, . . . , xi, . . . , 0) ∈
X with αi ̸= 0 ∈ Xi, we get ∥pi(x)∥Xi

= ∥xi∥Xi
= ∥x∥X which

implies ∥pi∥ ≥ 1.

2) Sufficiency: taking an arbitrary Cauchy sequence

(xm)m∈N =
(
(x(1)m , . . . , xnm)

)
m∈N

in X. Then

max
1≤i≤n

∥∥∥x(i)p − x(i)q ∥∥∥
Xi

≤ ∥xp − xq∥ → 0(p, q →∞),

which means that (x(i)m )m∈N is Cauchy in Xi and hence converges
to some y(i) ∈ Xi. Then

lim
m
xm = (y(1), . . . , y(n)) =: y ∈ X

Because

lim
m
∥xm − y∥X = lim

m

( n∑
i=1

∥∥∥x(i)m − y(i)∥∥∥p)1/p

= 0.

Therefore X is complete.
Necessity: ∀1 ≤ i ≤ n, Xi is isometric to Ei ↪→ X, where
Ei := {(0, . . . , xi, 0, . . .) : xi ∈ Xi}. The isometry is

ιi : Xi → Ei, x 7→ (0, . . . , x, 0, . . .).

Ei is closed, since
Ei =

⋂
j ̸=i

p−1
j (0)

is a finite intersection of closed sets. Thus Ei is complete since X
is complete. And now, Xi is isometric to a Banach space. We’re
done.
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7.1.2 Unbounded Linear Functional

This proposition gives a description of unbounded linear functional.

Lemma 7.1. Let X ∈ Ob(Nor) and f ∈ L(X,K) is an unbounded
linear functional. Then

f
(
B(0, r)

)
= K,∀r > 0.

Proof. Given an arbitrary α ∈ K, α ̸= 0 there is x′ ∈ B(0, r) such
that |f(x′)| ≥ |α| (else, f maps a bounded ball to a bounded set and
hence f is bounded). Taking x = α

f(x′)x
′, we’re done since

f(x) = f
( α

f(x′)
x′
)
=

α

f(x′)
f(x′) = α

and x ∈ B(0, r) since

∥x∥ = |α|
|f(x′)|

∥x′∥ ≤ ∥x′∥ < r.

By lemma 7.1, we have

Proposition 7.2. Suppose f ∈ X∗ and f ̸= 0. The following state-
ments are equivalent:

1) f is continuous;

2) ker f is closed.

Proof.

1) =⇒ 2) {0} is closed in K and 2) follows from the topological defi-
nition of continuity.

2) =⇒ 1) ker f is closed and hence is not dense in X since f ̸= 0.
Therefore

∃x0 ∈ X∃r > 0(B(x0, r) ∩ ker f = ∅.) (13)

You can check (13) by denying the proposition “ker f is dense
in X”. If f is not continuous, then Lemma 7.1 ensures that
f
(
B(0, r)

)
= K. Thus, ∃y ∈ B(0, r) such that f(y) = −f(x0).

And now
f(y + x0) = f(y) + f(x0) = 0,

i.e. y+x0 ∈ ker f while y+x0 ∈ B(x0, r). This is a contradiction
since B(x0, r) ∩ ker f = ∅.
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Exercise 7.1. Determine which of the following sets are closed

1) M := {x ∈ ℓ2 :
∑
n≥1 xn/

√
n = 0};

2) M := {x ∈ ℓ2 :
∑
n≥1 xn/n = 0}.

Solution. In fact, 2) is simpler.

1) We will not prove this, because f : ℓ2 → K is not well-defined. There
is an element in ℓ2:

x : N→ K, n 7→

{
0 n = 1

1√
n logn

n ≥ 2

such that f(x) /∈ K.
The set in 1) can be proved to be not closed by the theory of
Hilbert Space.

Proof. First, M⊥ = {0}. Let x ∈M⊥, then for all n ∈ N:

x ⊥ e1 −
√
nen ∈M =⇒ xn = 1/

√
nx1.

Thus,
∞ >

∑
n≥1

|xn|2 = |x1|2
∑
n≥1

1/n =⇒ x1 = 0,

and hence x− 0.

2) Let

f : ℓ2 → K, x 7→
∞∑
n=1

1

n
xn. (14)

Clearly f is well-defined. Furthermore, ∀x ∈ ℓ2, we have

|f(x)| ≤
∑
n≥1

1

n
|xn| ≤

(∑
n≥1

1/n2
)1/2

∥x∥2

And hence M = f−1(0) is closed.

Remark 7.1. We have ∥f∥ = π/
√
6 by taking

ℓ2 ∋ x = (1, 1/2, . . . , 1/n, . . .),

since ∥x∥ℓ2 = π/
√
6 and |f(x)| = π2/6.

Remark 7.2. In fact,
ℓ∗p
∼= ℓq,

where p ∈ [1,∞) and q = p/(p− 1).
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7.2 Lecture 7-2
7.2.1 Theorems about Banach Spaces

Here are some topics of this lecture:

1. Open mapping theorem, see Theorem 7.3;

2. Banach-Steinhaus Theorem, see Theorem 7.6;

3. Hahn-Banach Theorem, see Theorem 9.1 and Theorem 9.2.

To state Theorem 7.3 better, we need a topological notion:

Definition (Open mapping). Let (X, T ), (Y, T ) be two topological
spaces and f : X → Y be an arbitrary map (not continuous possibly).
f is said to be an open mapping, if ∀O ∈ TX , f(O) ∈ TY .

And then we have

Theorem 7.3 (Open mapping theorem). Let X,Y be two Banach
spaces and T ∈ B(X,Y ). If T is surjective then T is open.

Proof of Theorem 7.3 is delayed to next (maybe) course.

Theorem 7.4 (Boundedness of inverse mapping). Let X,Y be two
Banach spaces and T ∈ B(X,Y ). If T is bijective, then T−1 ∈ B(Y,X).

Proof. Theorem 7.3 implies that T is an open mapping and equiva-
lently T−1 is continuous.

Theorem 7.4 implies

Corollary 7.5. Let (X, ∥ ∥1), (X, ∥ ∥2) be two Banach spaces. If ∃C >
0 such that ∥ ∥1 ≤ C∥ ∥2, then ∥ ∥1 ∼ ∥ ∥2.

Proof. Consider idX : (X, ∥ ∥2) → (X, ∥ ∥1). ∥ ∥1 ≤ C∥ ∥2 implies
that idX is continuous. Apply Theorem 7.4 to idX and we get that
id−1
X is bounded.

Theorem 7.6 (Banach-Steinhaus). Let (X, ∥ ∥X) be a Banach space,
(Y, ∥ ∥Y ) ∈ Ob(Nor) and {Tλ}λ∈Γ ⊆ B(X,Y ). If

∀x ∈ X, sup
λ∈Γ
∥Tλx∥Y <∞,

then supλ∈Γ∥Tλ∥ <∞.
The other name of this theorem is “the uniform boundedness prin-

ciple”.
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Proof. Here is a proof using the Corollary above.
Let ∥ ∥I be a new norm on X, defined as

∥ ∥I : X → R≥0, x 7→ ∥x∥X + sup
λ∈Γ
∥Tλx∥Y .

It’s easy to verify that ∥ ∥I is actually a norm. Clearly idX : (X, ∥ ∥I)→
(X, ∥ ∥X) is continuous. If (X, ∥ ∥I) is a Banach space, then Corollary
can be applied and we’re done. Now, taking an arbitrary Cauchy se-
quence (xn)n∈N ⊆ (X, ∥ ∥I), i.e.

lim
m,n
∥xn − xm∥I = 0. (15)

And (15) is equivalent to

lim
m,n
∥xn − xm∥X = 0, (16)

lim
m,n

sup
λ∈Γ
∥Tλxn − Tλxm∥Y = 0. (17)

Since (X, ∥ ∥X) is a Banach space, (16) implies that (xn)n∈N
∥ ∥X−−−→ x ∈

X. Now we prove that (xn)n∈N
∥ ∥I−−−→ x ∈ X and it suffices to show

that limn supλ∈Γ∥Tλxn − Tλx∥Y = 0. And this proof is similar to the
proof of the completeness of C[a, b].

To see this, from the definition of limit of double indexed sequence:

∀ε > 0∃N ∈ N : ∀m,n > N, sup
λ∈Γ
∥Tλxn − Tλxm∥Y < ε.

The definition of sup implies that

∀m,n > N, ∥Tλxn − Tλxm∥Y < ε(∀λ ∈ Γ).

Let m → ∞, the continuity of ∥ ∥Y and Tλ (for each λ ∈ Γ) implying
that

∀n > N, ∥Tλxn − Tλx∥Y ≤ ε(∀λ ∈ Γ).

Therefore,
∀n > N, sup∥Tλxn − Tλx∥Y ≤ ε.

Equivalently,
lim
n

sup∥Tλxn − Tλx∥ = 0,

which was what we wanted.
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7.2.2 Baire Category Theorem

Definition (Gδ-set, Fσ-set). Let (X, T ) ∈ Ob(Top).

• A set of the form
⋂∞
n=1Gn is called a Gδ-set, where (Gn)n∈N ⊆ T .

• A set of the form
⋃∞
n=1 Fn is called a Fσ-set, where (F cn)n∈N ⊆ T .

Remark 7.3. Here “G” is German (Gebiet) and “F” is French (Fermé).

Definition (First Category Set). Let (X, T ) ∈ Ob(Top). A ⊆ X is
called a set of the first category, if A ⊆ B for some Fσ set B with
B̊ = ∅.

Definition (Second Category Set). Let (X, T ) ∈ Ob(Top). A ⊆ X is
called a set of the second category, if A is not of the first category.

Definition (Baire Space). Let (X, T ) ∈ Ob(Top). (X, T ) is called a
Baire space, if each countable intersection of dense open sets is dense
in X.

Here is an equivalent definition of Baire space

Definition (Baire space). Let (X, T ) ∈ Ob(Top). (X, T ) is called a
Baire space, if each countable union of closed sets with empty interior
has empty interior.

And now we can talk about Baire category Theorem.

Theorem 7.7 (Baire category Theorem). If (X, T ) is a topological
space whose topology T can be induced by a complete metric, then X
is a Baire space.

Proof. Suppose (X, d) is the metric space whose topology induced by
d is T . Let (On)n∈N be a sequence of dense open sets in (X, d). It
suffices to show that O =

⋂
n≥1On is dense in X. Taking an arbitrary

open set ∅ ̸= U ∈ T , now we show that O ∩ U ̸= ∅.
Since O1 is dense in X, we have O1∩U ̸= ∅ and thus ∃x1 ∈ O1∩U .

Moreover, ∃r > 0 such that B(x1, r) ⊆ O1 ∩ U since O1 ∩ U ∈ T . Let
F1 := B(x1, r/2). Then F̊1 ̸= ∅, F1 ⊆ O1 ∩ U and diamF1 = r =: r1.

Since O2 is dense in X and F̊1 ̸= ∅, we have O2 ∩ F̊1 ̸= ∅ and thus
∃x2 ∈ O1 ∩ U . Moreover, ∃r2 > 0 ∧ r2 < r1/2 such that B(x2, r2) ⊆
O2 ∩ F̊1. Let F2 := B(x2, r2). Then F̊2 ̸= ∅, F2 ⊆ O2 ∩ U and
diamF2 < r1/2.

Analogically, we can define a sequence of decreasing closed sets
(Fn)n∈N such that F̊n ̸= ∅(∀n ∈ N), Fn ⊆ On ∩ U(∀n ∈ N) and
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diamFn ≤ 21−nr(∀n ∈ N). Then the third question of Lecture 4-1
implies that ∃!x0 ∈ X such that

{x} =
⋂
n≥1

Fn.

Therefore,

O ∩ U =
( ⋂
n≥1

On

)⋂
U =

⋂
n≥1

(On ∩ U) ⊇
⋂
n≥1

Fn = {x},

and hence O ∩ U ̸= ∅. Since U is arbitrary, O is dense in X.

Here is some results about Baire space:

Theorem 7.8. Let X be a Baire space. Then

1) Each open subset of X with the subspace topology is a Baire sapce;

2) Suppose (Fn)n∈N is a sequence of closed subsets of X with X =⋃
n≥1 Fn, then

⋃
n≥1 F̊n is dense in X.

Proof.

1) For A ⊆ X, let clA means the closure operator with respect to
the subspace topology of A. Similarly, int means the interior
operator.

Suppose Ω ⊆ X is open. Given (On)n∈N ⊆ Ω such that clΩ(On) =
Ω(∀n ∈ N), i.e. On is dense in Ω for all n ∈ N. Since clΩ(On) =
Ω ∩ On, we have On ⊇ Ω and hence On ⊇ Ω. Since the closure
of union is the union of closure, we have On ∪

(
Ω
)c is dense in X

for all n ∈ N. Therefore,

(Un)n∈N :=
(
On ∪

(
Ω
)c)

n∈N

is a sequence of dense open sets in X. Now X is a Baire space,
which means

⋂
n≥1 Un is dense in X. While⋂

n≥1

Un =
( ⋂
n≥1

On

)
∪
(
Ω
)c
,

and hence ⋂
n≥1

Un = X =
⋂
n≥1

On ∪
(
Ω
)c
.
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To prove that clΩ(
⋂
n≥1On) = Ω, we want to show that

(
Ω
)c ⊆

Ωc. And this holds(
Ω
)c ⊆ Ωc =⇒

(
Ω
)c ⊆ Ωc.

since
(
Ω
)c is the smallest closed set containing

(
Ω
)c.

Above all, Ω is a Baire space.

2) Let Ω ̸= ∅ be an arbitrary open set in X. Then 7.8 implies that Ω
is a Baire space. And

Ω = Ω ∩X =
⋃
n≥1

(Ω ∩ Fn),

the definition of Baire space ensures that there is some n ∈ N
such that int(Ω ∩ Fn) ̸= ∅. Since “the interior of intersection is
the intersection of union” and Ω is open, we have Ω ∩ F̊n ̸= ∅.
Therefore

Ω ∩
( ⋃
j≥1

F̊j

)
⊇ Ω ∩ F̊n ̸= ∅.

Then
⋂
n≥1 Fn is dense in X since Ω is arbitrary.

Now we give another proof of Theorem 7.6 by the Baire category
Theorem.

Proof of Theorem 7.6. Let

M : X → R, x 7→ sup
λ∈Γ
∥Tλx∥Y ,

which is well-defined by the assumption. For all n ∈ N

Fn :=M−1[0, n] =
⋂
λ∈Γ

(∥ ∥Y ◦ Tλ)
−1[0, n],

and ∥ ∥Y , Tλ(∀λ ∈ Γ) is continuous. Therefore, Fn is closed. Now X is
a Banach space (hence a Baire space) and

X =
⋃
n≥1

Fn.

Theorem 7.8 shows that there is some k ∈ N such that M̊k ̸= ∅. There
is x0 ∈ F̊k and r > 0 such that BX(x0, r) ⊆ F̊k. Now ∀x ∈ BX(x0, r),
x+ x0 ∈ BX(x0, r) and hence ∀λ ∈ Γ, we have

∥Tλ(x)∥Y ≤ ∥Tλ(x+ x0)∥Y + ∥Tλ(x0)∥Y ≤ k +M(x0).
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Thus T
(
BX(x0, r)

)
⊆ BY (0, k +M(x0)) holds for all λ ∈ Γ, which

implies

∥Tλ∥ ≤
k +M(x0)

r
,∀λ ∈ Γ.

Above all, supλ∈Γ∥Tλ∥ ≤ (k +M(x0))/r <∞.

Remark 7.4. To give X =
⋃
n≥1 Fn, we need the assumption

∀x ∈ X : M(x) <∞.
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8 Week 8

8.1 Lecture 8-1
Recall

We have proved Theorem 7.8 by Open mapping theorem. We used the
corollary 7.5 and proved that cod(idX) is a Banach space, where

idX : (X, ∥ ∥X)→ (X, ∥ ∥X + sup
λ∈Γ
∥ ∥Y ◦ Tλ)

is continuous.
Moreover, we proved Baire category Theorem and applied it to

prove Banach-Steinhaus Theorem.

8.1.1 Application of Banach-Steinhaus Theorem

Definition (Strong convergence). Let X,Y be two normed spaces,
(Tn)n∈N ⊆ B(X,Y ) and T ∈ B(X,Y ). We say that (Tn)n∈N converges
to T strongly, if

∀x ∈ X, (Tnx)n∈N
∥ ∥Y−−−→ Tx,

denoted as (Tn)n∈N
s−→ T .

Remark 8.1. The relation between (Tn)n∈N
s−→ T and (Tn)n∈N

∥ ∥−−→
T is similar to the pointwise convergence and uniform convergence of
function sequence.

We use Banach-Steinhaus to prove the following theorem about
strong convergence.

Theorem 8.1. Let X be a linear normed space, Y be a Banach space,
and (Tn)n∈N ⊆ B(X,Y ) is a sequence of operators. Suppose

1. supn∈N∥Tn∥ <∞;

2. ∃G ⊆ X such that G = X and ∀x ∈ G, (Tnx)n∈N converges in
Y .

Then there is a T ∈ B(X,Y ) with ∥T∥ ≤ lim infn→∞∥Tn∥ such that

Tn
s−→ T (n→∞).
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Proof. Let M := supn∈N∥Tn∥. Since G is dense in X, ∀x ∈ X and
∀ε > 0, there is y ∈ G such that ∥y − x∥ < ε. Then

∥Tnx− Tmx∥ ≤ ∥Tnx− Tny∥+ ∥Tny − Tmy∥+ ∥Tmy − Tmx∥
≤ ∥Tn∥∥x− y∥+ ∥Tny − Tmy∥+ ∥Tm∥∥y − x∥
≤ 2Mε+ ∥Tny − Tmy∥.

Let m,n→∞ and use the strong convergence of (Tn)n∈N, we find

lim sup
m,n

∥Tnx− Tmx∥ ≤ 2Mε.

From arbitrariness of ε > 0, we get limm,n∥Tnx− Tmx∥ = 0, i.e.
(Tnx)n∈N is a Cauchy sequence in Y and hence converges to some point
in Y , because Y is a Banach space. Therefore, we can define

T : X → Y, x 7→ lim
n
Tnx,

which is linear since both Tn(∀n) and limn is linear (i.e. T is a com-
position of two linear maps, f1 : X → E , x 7→ (Tnx)n∈N and f2 : E →
Y, (yn)n∈N 7→ limn yn, where E is the set of all Cauchy sequences in Y .
Then T = f2 ◦ f1 is linear.

Now we show that, T is what we want. For all x ∈ X,

∥Tx∥ =
∥∥∥lim
n
Tnx

∥∥∥ = lim
n
∥Tnx∥,

since ∥ ∥ is continuous. And ∀n ∈ N, ∥Tnx∥ ≤ ∥Tn∥∥x∥, take lim inf on
both sides and we get

lim inf∥Tnx∥ ≤ lim inf∥Tn∥∥x∥. (18)

And (∥Tnx∥)n∈N is a Cauchy sequence in R, thus lim∥Tnx∥ exists in R.
Then 18 implies

∥Tx∥ = lim∥Tnx∥ ≤ lim inf∥Tn∥∥x∥ (∀x ∈ X)

so
∥T∥ ≤ lim inf

n
∥Tn∥,

which ensures that T ∈ B(X,Y ).

If X is also a Banach space, then the inverse proposition holds.
That is:

Proposition 8.2. Let X,Y be two Banach spaces. Suppose there is
some T ∈ B(X,Y ) such that (Tn)n∈N

s−→ T , then
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1. supn∈N∥Tn∥ <∞;

2. ∃G ⊆ X such that G is dense in X and ∀x ∈ G, (Tnx)n∈N
converges in Y .

Proof. For all x ∈ X, (∥Tnx∥)n∈N is a Cauchy sequence (and hence
bounded) in R by strong convergence. Then Theorem 7.8 implies that
supn∈N∥Tn∥ is finite. Let G = X then G = X and ∀x ∈ G, (Tnx)n∈N

converges in Y , since (Tn)n∈N
s−→ T .

To state the next theorem better, there is an essential exercise.

Exercise 8.1. If Y is a Banach space and X is a linear normed space,
then B(X,Y ) is a Banach space. Especially, X∗ is a Banach space.

Proof of this exercise is written in the Appendix B. Note that the
exercise is just saying that B(X,Y ) is complete in the meaning of the
metric induced by the norm, then you can see that the next theorem
is just saying that B(X,Y ) is complete in the meaning for “strongly
Cauchy sequence converges to some operator strongly”.

Theorem 8.3. If X,Y are Banach spaces, then ∀(Tn)n∈N ⊆ B(X,Y )
such that

Tn − Tm
s−→ 0(m,n→∞), (19)

we have
Tn − T

s−→ 0(n→∞)

for some T ∈ B(X,Y ).

Proof. Since (19) implies that ∀x ∈ X, (Tnx)n∈N is a Cauchy sequence
in Y . Since Y is a Banach space, (Tnx)n∈N converges to some point in
Y . Notice that ∀x ∈ X, (∥Tnx∥)n∈N in bounded in R, thus Theorem 7.6
implies that supn∈N∥Tn∥ < ∞, so let G = X, apply Theorem 8.1 and
we’re done.

Inverse of Hölder’s inequality

We have learnt the Hölder’s inequality (especially, for the measure space
(N,P(N), µ) ): ∀p ∈ [1,∞], ∀a ∈ ℓp, b ∈ ℓq,

∥ab∥1 ≤ ∥a∥p∥b∥q

holds, where q = p′. Now we’re going to show that if p ∈ (1,∞),
∀x ∈ ℓp we have

∑
n≥1 αnxn < ∞, then (αn)n∈N ∈ ℓq, where q = p′.

For convenience, consider K = R.
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Proof. Let

(∀k ∈ N)fk : ℓp → R, (xn)n∈N 7→
k∑
j=1

xjαj .

Then fk is linear, and bounded since Hölder’s inequality implies

|fkx| ≤
k∑
j=1

|xjαj |

≤
( k∑
j=1

|xj |p
)1/p( k∑

j=1

|αj |q
)1/q

≤
( k∑
j=1

|αj |q
)1/q

∥x∥p,

i.e. ∥fk∥ ≤
(∑k

j=1|αj |
q)1/q. And the reversed inequality holds, to see

this, consider the equality condition of Hölder’s inequality (and triangle
inequality) and hence pick

ℓp ∋ x(k), (x(k)n )n∈N := (sign(α1)|α1|q/p, . . . , sign(αk)|αk|q/p, 0, . . .).

And ∣∣∣fk(x(k))∣∣∣ = k∑
j=1

|αj |q,
∥∥∥x(k)∥∥∥

p
=

( k∑
j=1

|αj |q
)1/p

,

implies

∥fk∥ ≥
( k∑
j=1

|αj |q
)1−1/p

=
( k∑
j=1

|αj |q
)1/q

.

Above all, ∥fk∥ =
(∑k

j=1|αj |
q)1/q.

By assumption, we have ∀x ∈ ℓp,
(
fn(x)

)
n∈N converges, and hence

is bounded. Now apply Theorem 7.6, we get supn∈N∥fn∥ <∞. While
(∥fn∥)n∈N ⊆ R is a non decreasing sequence, thus

sup
n∈N
∥fn∥ = lim

n→∞
∥fn∥ = lim

n→∞

( k∑
j=1

|αj |q
)1/q

= ∥α∥q.

Therefore, ∥α∥q <∞, i.e. α ∈ ℓq.

Remark 8.2. We can drop the restriction K = R.

Page 77 of 198



8.1 Lecture 8-1 8 WEEK 8

Fourier series’s divergence

First, we introduce some notions for convenience.

Definition. Let C2π be the normed space whose underlying set is

{f : R→ C | f is continuous and 2π -periodic},

with the norm
∥ ∥∞ : C2π → R, f 7→ sup

x∈R
|f(x)|.

Remark 8.3. The norm max is well-defined since f is 2π-periodic
implies that

sup
R
|f | = sup

[0,2π]

|f | = max
[0,2π]

|f |.

For clarity, here is the definition of period of a real function.

Definition (Period, Periodic function). Let f be a function R → R.
A number T ∈ R is called a period of f , if

f = τT f,

where
τT f : R→ C, x 7→ f(x− T ).

Function f has a period T is called a T -periodic function, or a pe-
riodic function for short.

Remark 8.4. Let

per(f) := {T ∈ R : τT f = f},

then per(f) is a subgroup of the additive group R. The structure of
per(f) has only 3 possibilities:

1. per(f)={0}, i.e. f is not a periodic function.

2. per(f) = T0Z = {T0k : k ∈ Z} for some T0 > 0. And such T0 is
usually called the fundamental period or the minimum period.

3. per(f) is a dense subgroup of R, equivalently f has no funda-
mental period. For example, per(χQ) = Q.

The Fourier series of a 2π-periodic function is defined as follows
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Definition (Fourier transform, Fourier coefficient). Given f ∈ C2π,
the Fourier transform of f is the sequence defined as follows

f̂ : Z→ C, n 7→ 1

2π

∫ π

−π

f(θ)e−inθ dθ.

We use the notation
f(x) ∼

∑
n∈Z

ane
inx

to mean that an = f̂(n),∀n ∈ Z. The n-th term of f̂ , f̂(n) is called the
n-th Fourier coefficient of f .

And define the partial sum of Fourier series

Definition. The n-th partial sum of f ’s Fourier series, denoted by
Sn(f) is

n∑
k=−n

f̂(k)e−ikx =

n∑
k=−n

1

2π

∫ π

−π

f(θ)eik(θ−x) dθ.

To understand the partial sum better, we have to notations: con-
volution and Dirichlet kernel.

Definition (Convolution). Given the measure space ([−π,π],B, µ) and
two measurable function f, g, define

f ∗ g : [−π,π]→ C, t 7→

{∫ π

−π
f(t− x)g(x) dµ(x), if integral is finite

0. else

Here µ is an arbitrary Borel measure on (R,B).

Fubini’s Theorem implies that, if f, g ∈ L1[−π,π], then∫
[−π,π]

f(t− x)g(x) dm
2π

(x) <∞

for almost every t ∈ [−π,π].

Definition (Dirichlet kernel). Given n ∈ N, the function

Dn : R→ C, x 7→
n∑

k=−n

eikx

is called the n-th Dirichlet kernel.
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By this definitions, we have a convolution formula for the n-th par-
tial sum of Fourier series

Sn(f)(x) =

∫ π

−π

f(θ)
n∑

k=−n

eik(x−θ)
dm

2π
(x) = Dn ∗ f(x),

where the convolution is taking integration with respect to the measure
m
2π , i.e. Lebesgue measure multiplied by 1/2π.

Now, we have the following result.

Proposition 8.4. The set {f ∈ C2π : supn∈N|Sn(f)(0)| = ∞} is a
dense Gδ subset of C2π.

This means that, there are lots of functions in C2π whose Fourier
series diverges at 0.

First, we have a overlook about the proof

Sketch of proof. We have the following steps:

Step 1. Define a linear functional sequence (un)n∈N as follows

un : C2π → C, f 7→ Sn(f)(0). (20)

Check that (un)n∈N ⊆ B(C2π,C).

Step 2. Show that supn∈N∥un∥ =∞.

Step 3. Apply the following theorem.

Theorem 8.5 (Principle of concentration of singularity). Let
X be a Banach space, Y be a linear normed space and {ui ∈
B(X,Y ) : i ∈ I} such that

sup
i∈I
∥ui∥ =∞.

Then {x ∈ X : supi∈I∥ui(x)∥ =∞} is a dense Gδ set in X.

And now we give the detailed proof.

Proof.

Page 80 of 198



8.1 Lecture 8-1 8 WEEK 8

Step 1. Define (un)n∈N as (20). Given n ∈ N, we have

|un(f)| = |Sn(f)(0)|

≤
∫ π

−π

∣∣∣∣∣f(t)
n∑

k=−n

eikt

∣∣∣∣∣dm2π (t)

≤ ∥f∥∞∥Dn∥1(Hölder’s inequality)

Thus ∀n ∈ N, un ∈ B(C2π,C) and ∥un∥ ≤ ∥Dn∥1.
The reversed inequality holds. To see this, ∀ε > 0, take a finite
union of intervals (denote the union by I) such that m(I) ≤
πε/(2n + 1). This is possible since Dn has only finite zeros in
[0, 2π] (consider Dn(t) =

sin(n+1/2)x
sin(x/2) ). Now Define f

f : [0, 2π]→ C, x 7→


1, x /∈ I ∧Dn(x) > 0;

−1, x /∈ I ∧Dn(x) < 0;

l(x), x ∈ I.

Here l is the affine mapping on each subinterval of I such that f
is continuous.

|un(f)| ≥

∣∣∣∣∣
∫
[−π,π]\I

f(t)Dn(t)
dm

2π
(t)

∣∣∣∣∣−
∣∣∣∣∫
I

f(t)Dn(t)
dm

2π
(t)

∣∣∣∣
=

∫
[−π,π]\I

|Dn(t)|
dm

2π
(t)−

∣∣∣∣∫
I

f(t)Dn(t)
dm

2π
(t)

∣∣∣∣
=

∫
I

|Dn(t)|
dm

2π
(t)− 2

∣∣∣∣∫
I

f(t)Dn(t)
dm

2π
(t)

∣∣∣∣
≥ ∥Dn∥1 − ∥f∥∞ε.

The first inequality is just |x+ y| ≥ |x|−|y|, and the last inequal-
ity follows from∣∣∣∣∫

I

f(t)Dn(t)
dm

2π
(t)

∣∣∣∣ ≤ ∫
I

|f ·Dn|
dm

2π

≤ ∥f∥∞
∫
I

|Dn|
dm

2π

≤ ∥f∥∞(2n+ 1) · m
2π

(I)

≤ ∥f∥∞(2n+ 1) · 1

2π

πε

2n+ 1
.
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since ∥Dn∥∞ ≤ 2n+ 1. From ∥f∥∞ = 1, we get

∥un∥ ≥ ∥Dn∥1 − ε (∀ε > 0),

which implies ∥un∥ ≥ ∥Dn∥.
Above all, ∥un∥ = ∥Dn∥. Now we show that (∥Dn∥)n∈N is un-
bounded. Let dx denote dm(x) for short

∥Dn∥1 =

∫ π

−π

|sin(n+ 1/2)x|
|sin(x/2)|

dx

2π

≥ 1

2π

∫ π

0

|sin(n+ 1/2)x|
x/2

dx

=
2

π

∫ 2n+1
2 π

0

|sinx|
x

dx

>
2

π

∫ π

0

|sinx|
x

dx

=
2

π

n−1∑
k=0

∫ π

0

|sinx|
x+ kπ

dx,

and ∫ π

0

|sinx|
x+ kπ

dx ≥ 1

(k + 1)π

∫ π

0

|sinx|dx =
2

(k + 1)π
.

Therefore

∥Dn∥1 ≥
4

π2

n∑
k=1

1

k
∼ 4

π2
log n→∞(n→∞).

Then, Theorem 8.5 implies the result.

Here is the proof of Theorem 8.5.

Proof of Theorem 8.5. Let

M : X → [0,∞], x 7→ sup
i∈I
∥ui(x)∥.

Define
Fn = {x ∈ X :M(x) ≤ n}(∀n ∈ N),
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then Fn is closed in X and hence Ωn := F cn is open, for all n ∈ N. Now
if F̊m = ∅ for some m ∈ N, then

{x ∈ X :M(x) =∞} =
⋂
n≥1

Ωn,

hence {x ∈ X : M(x) = ∞} is a Gδ-set. If {x ∈ X : M(x) = ∞} is
not dense in X, i.e.

⋂
n≥1 Ωn is not dense in X, then there is some

m ∈ N such that Ωm is not dense in X, since X is a Banach space
(hence a Baire space). But Ωm ̸= X implies that F̊m ̸= ∅, thus the
proof of Theorem 7.8 works (but we should replace ∥Tλ(x0)∥ ≤M(x0)
with ∥Tλ(x0)∥ ≤ k), contradiction with supi∈I∥ui∥ =∞.
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8.2 Lecture 8-2
The aim of this lecture is

Aim. Prove the open mapping theorem.

We haven’t proved Theorem 7.3, which needs a strong condition: T
is surjective. We will change this restriction weaker.

Recall

• A set B is called a set of first category, if B ⊆ F̊ , where F is a
Fσ set such that F̊ = ∅.

• A topological space (X, T ) is said to be a Baire space, if for all
open set sequence (On)n∈N such that On = X(∀n ∈ N), we have⋂
n≥1On = X.

1. A set O is open and dense in X if and only if Oc is closed
and (Oc)̊ = ∅.

2. Let X be a topological space. Then X is a Baire space if and
only if for all closed set sequence (Fn)n∈N such that F̊n = ∅,
we have

(⋃
n≥1 Fn

)̊
= ∅.

8.2.1 Open Mapping Theorem (general version)

Theorem 8.6 (Open mapping theorem). Let X,Y be two Banach
spaces and T ∈ B(X,Y ). If T (X) ↪→ Y is a set of second category,
then

1. there is c > 0 such that BY ⊆ cT (BX). Here BX , BY means the
unit ball in X,Y respectively.

2. T is an open mapping.

Proof. In this theorem, for k ∈ K and A,B ⊆ X,

kA := {kx ∈ X : x ∈ A}, A+B := {x+ y : x ∈ A, y ∈ B}.

Similarly for A,B ⊆ Y .
From X =

⋃
n≥1 nBX , we have

T (X) =
⋃
n≥1

T (nBX) ⊆
⋃
n≥1

T (nBX),

and hence T (X) ⊆
⋃
n≥1 T (nBX). Thus T (X) is a Fσ-set in Y . So(⋃

n≥1 T (nBX)
)̊
̸= ∅ (else,

⋃
n≥1 T (nBX) is a Fσ-set containing T (X)
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while having empty interior, contradiction with T (X) is a set of second
category). While Y is a Banach space, hence a Baire space, and there is
some m ∈ N such that

(
T (mBX)

)̊
̸= ∅. Thus, there is y0 ∈

(
T (mBX)

)̊
and r > 0 such that

y0 + rBY ⊆
(
T (mBX)

)̊
⊆ T (mBX).

Then

rBY ⊆ T (mBX)− y0 ⊆ T (mBX)− T (mBX) ⊆ T (2mBX).

The second ⊆ follows from y0 ∈ T (mBX) and the last ⊆ can be easily
checked by taking sequences convergent to each point. Now we have

BY ⊆ T (cBX),

where c := 2m/r. And we want BY ⊆ T (cBX). To see this, given
arbitrary y1 ∈ B(Y ) ⊆ T (cBX), there is x1 ∈ cBX such that

∥y1 − T (x1)∥ < 1/2,

from the definition of closure. Then y2 := 2(y1 − T (x1)) ∈ BY , since
∥y1∥ < 1. Using the definition of closure again, there is x2 ∈ cBX such
that

∥y2 − T (x2)∥ < 1/2.

Now we define y3 := 2(y2 − T (x2)) ∈ BY . And we can define two
sequences (xn)n∈N ⊆ cBX , (yn)n∈N ⊆ BY inductively, such that

∀n ∈ N

{
∥yn − T (xn)∥ < 1/2,

yn+1 = 2(yn − T (xn)).

Hence, ∀n ∈ N

y1 = y2/2 + T (x1)

= y3/2
2 + T (x2)/2 + T (x1)

= · · ·

= yn+1/2
n +

n∑
j=1

T (xj)/2
j

= yn+1/2
n + T

( n∑
j=1

xj/2
j
)
,
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where ∥yn+1/2
n∥ < 2−n since yn+1 ∈ BY ,

∑n
j=1 xj/2

j is absolutely
convergent since∥∥∥∥∥∥

n∑
j=1

xj/2
j

∥∥∥∥∥∥ ≤
n∑
j=1

∥∥xj/2j∥∥ < n∑
j=1

c

2j
< c(∀n ∈ N).

and is convergent to some x0 ∈ cBX because X is a Banach space.
Therefore, by the continuity of T

y1 = lim
n→∞

yn+1/2
n + T

( n∑
j=1

xj/2
j
)

= lim
n→∞

T
( n∑
j=1

xj/2
j
)

= T
(

lim
n→∞

n∑
j=1

xj/2
j
)

= T (x0).

Above all, BY ⊆ T (cBX) = cT (BX). Then

Y =
⋃
n≥1

nBY ⊆
⋃
n≥1

nT (cBX) = T (
⋃
n≥1

ncBX) = TX,

i.e. T is surjective.
To see that T is open, it suffices to show that T (x+ δBX) is open

in Y since {x + δBX : x ∈ X, δ > 0} is a topology base for X. While
T is linear, WLOG, it suffices to show T (BX) is open. Given x ∈ BX ,
T (x) ∈ T (BX), there is rx > 0 such that x+ rxBX ⊆ BX and hence

T (BX) ⊇ T (x) + rxT (BX) ⊇ T (x) + rxc
−1BY ,

thus T (BX) is open.

Remark 8.5. This implies Theorem 7.3, since T (X) = Y and Y is
a Banach space (hence a Baire space) implies T (X) = Y is of second
category. Since Y is an open set that can’t be of first category.

8.2.2 Closed Graph Theorem

Some results in subsection 7.1 are used here.
This graph tells the relation between theorems.

Thm 8.6 Thm 7.4

Thm 8.8 Cor 7.5 Thm 7.6
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Now we talk about the Closed Graph Theorem. Here is the natural
definition of the graph of a operator.

Definition (Graph). Let X,Y be two sets (allowed to have structures
such as topology, norm and so on) and T : X → Y is a map. The graph
of T , denoted by G(T ) is defined as

G(T ) := {(x, y) ∈ X × Y : y = Tx} = {(x, Tx) ∈ X × Y : x ∈ X}.

Remark 8.6. In this lecture, we assume X × Y is a linear normed
space, the norm of X × Y is

∥ ∥ : X × Y → R, (x, y) 7→ ∥x∥X + ∥y∥Y ,

if nothing else is mentioned. Equivalently, pick p = 1 by default.

Furthermore, we need this notion.

Definition (Closed Operator). Suppose X,Y are two sets, T : X → Y
is a map. Then T is said to be closed, if G(T ) is closed.

Recall that, a sequence
(
(xn, yn)

)
n∈N ⊆ X×Y converges to (x, y) ∈

(X × Y, ∥ ∥p), if and only if

lim
n
∥(xn, yn)− (x, y)∥p = lim

n

(
∥xn − x∥p + ∥yn − y∥p

)1/p

= 0,

i.e. (xn)n∈N
∥ ∥X−−−→ x ∧ (yn)n∈N

∥ ∥Y−−−→ y.

Proposition 8.7. Let X,Y ∈ Ob(Nor) and T ∈ L(X,Y ). Then

1. T is closed iff ∀(xn)n∈N ⊆ X,∀(yn)n∈N ⊆ y,∀x ∈ X,∀y ∈ Y such
that limn xn = x, limn T (xn) = y, we have T (x) = y.

2. If T is bounded, then T is closed.

Proof. For necessity of 1: suppose T is closed. Then ∀(xn)n∈N ⊆ X
such that limn xn = x ∧ limn Txn = y, we have

(
(xn, Txn

)
n∈N ⊆ G(T )

converges to (x, y) ∈ X×Y . While G(T ) is closed, we get (x, y) ∈ G(T )
thus y = Tx.

For sufficiency of 1: suppose T satisfies the latter condition in 1.
Given an arbitrary convergent sequence

(
(xn, yn)

)
n∈N ⊆ G(T ), i.e.

(xn)n∈N ⊆ X, yn = T (xn) for all n ∈ N and (xn)n∈N → x ∈ X.
Then the latter condition implies limn yn = limn Txn. And continu-
ity of T implies T (x) = limn yn. Thus the limit of

(
(xn, yn)

)
n∈N, i.e.

(x, limn yn) ∈ X × Y lies in G(T ). Therefore, G(T ) is closed.
For 2, suppose T is bounded. Then the continuity of T implies that

T satisfies the latter condition in 1.
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Now, the Closed Graph Theorem is

Theorem 8.8 (Closed Graph). Let X,Y ∈ Ob(Ban). If T : X → Y is
closed, then T is bounded.

Proof. We know that X × Y is a Banach space, and hence G(T ) ↪→
X×Y being a closed subspace ofX×Y is also a Banach space. Consider
the projection mapping

p : G(T )→ X

(x, Tx) 7→ x,

which is a linear bijection and ∥p∥ ≤ 1 since

∀x ∈ X,
∥∥p((x, Tx))∥∥

X
= ∥x∥ ≤ ∥x∥+ ∥Tx∥ = ∥(x, Tx)∥X×Y .

Theorem 7.4 implies p−1 ∈ B(X,G(T )). Therefore,

∀x ∈ X, ∥Tx∥ ≤ ∥x∥+ ∥Tx∥
= ∥(x, Tx)∥X×Y

=
∥∥p−1(x)

∥∥
X×Y

≤
∥∥p−1

∥∥∥x∥X ,
i.e. ∥T∥ ≤

∥∥p−1
∥∥ <∞.

Above all, T ∈ B(X,Y ).

Remark 8.7. This can also be proved by Corollary 7.5: since (X, ∥ ∥X)
is a Banach space, and

(X, ∥ ∥X + ∥ ∥Y ◦ T ) ∼= (G(T ), ∥ ∥X×Y )

is also a Banach space, where the isometry is just T : X → G(T ). Then
Corollary 7.5 ensures Theorem 8.8.
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9 Week 9

9.1 Lecture 9-1
In this subsection, I will use the notation f ≤ g lots of times, whose
meaning can be found here.

Recall

We have proved the relation between Theorems on Banach spaces, see
the graph in section 8.2.2.

9.1.1 Hahn-Banach Theorem

Today, here is going to prove Theorem 9.1 and Theorem 2. Zorn’s
lemma is needed here, see Appendix A.

There is an important object related to Hahn-Banach Theorem:

Definition (Sub-linear functional). Let X be a real linear space. A
real-valued function p : X → R is called a sub-linear functional, if

1. For all x ∈ X,λ ≥ 0, p(λx) = λp(x) holds;

2. For all x, y ∈ X, p(x+ y) ≤ p(x) + p(y) holds.

Definition (Linear dual space). For a linear space X ∈ Ob(LinK), the
dual space, denoted by X♯, is

X♯ := {f : X → K that is K-linear}.

The first theorem is irrelevant to topology, considering only linear
space.

Theorem 9.1 (Hahn-Banach). Let X be a real vector space and
X0 ↪→ X is a subspace. Suppose f0 ∈ X♯

0 and p : X → R is a sub-
linear functional such that f0 ≤ p|X0

. Then there is (at least one)
f ∈ X♯ such that (f |X0

= f0) ∧ (f ≤ p).

Proof. We will prove this Theorem by Zorn’s lemma. Thus we need
to construct an partially ordered set whose maximal element is the
function we want.

Step 1: We construct the partially ordered set. Let

F :=
⋃

X0↪→D↪→X

{g ∈ D♯ : g|X0
= f0 ∧ g ≤ p|D},
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where the union is taken over all subspaces D such that X0 ↪→ D ↪→ X.
Define an order on F as follows

g1 ≤ g2 ⇐⇒ dom(g1) ↪→ dom(g2) ∧ g2|dom(g1)
= g1,

i.e. g1 ≤ g2 iff g2 is an extension of g1 in the sense above.

Exercise 9.1. Check that (F ,≤) is a partially ordered set.

Step 2: We prove that F satisfies the condition of Zorn’s lemma.
Given an arbitrary linearly ordered subset F0 ⊆ F . We prove that
F0 has an upper bound in F . Consider the set

⋃
g∈F0

dom(g) =

dom
(⋃
F0

)
. Define the linear structure as follows

+: dom
(⋃
F0

)
× dom

(⋃
F0

)
→ dom

(⋃
F0

)
(v1, v2) 7→ v1 +V1∪V2 v2,

where Vj ∈ dom
(⋃
F0

)
is a space containing vj , V1 ∪ V2 is a subspace

of dom
(⋃
F0

)
since dom

(⋃
F0

)
is linearly ordered and +V1∪V2

is the
natural addition of the subspace V1 ∪ V2 (this is surely a subspace by
the linear order). Though it’s possible that v1 ∈ V1 ∩ V ′

1 , v2 ∈ V2 ∩ V ′
2

for some V1, V ′
1 ∈ F0, the summation + is well-defined. WLOG, we

suppose V1 ↪→ V ′
1 , V2 ↪→ V ′

2 by the linear order and then

v1 +V1∪V2 v2 = v1 +V ′
1∪V ′

2
v2

since V1 ∪ V2 ↪→ V ′
1 ∪ V ′

2 . And the scalar multiplication is just

· : dom
(⋃
F0

)
× R→ dom

(⋃
F0

)
, (v, k) 7→ k ·V v,

where V ∈ F0 is a subspace of X containing v. We can prove that ·
is well-defined similarly. Above all, dom

(⋃
F0

)
is a vector space of X

and contains X0. Now we define a linear functional on dom
(⋃
F0

)
as

follows
h : dom

(⋃
F0

)
→ R, v 7→ g(v),

whenever g is an element of F0 such that v ∈ dom(g). This is well-
defined by the property of F0. And h ∈ F is an upper bound for
F0.

Step 3: apply Zorn’s lemma, thus there is a maximal element in F
and let f be the maximal element. We prove that f is what we want.
Equivalently, we prove that

1. f ∈ X♯, i.e. dom(f) = X;
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2. f |X0
= f0;

3. f ≤ p.

Since f ∈ F , we get f |X0
= f0 and f ≤ p|dom(f). Thus it suffices to

show that dom(f) = X. Suppose there is an element x0 ∈ X \dom(f),
then

dom(f) + Rx0 = {y + kx0 : y ∈ dom(f) ∧ k ∈ R}

is a subspace of X strictly bigger than dom(f). We prove that f can
be extended to a linear functional f̃ on dom(f)+Rx0 such that f̃ ∈ F ,
which is a contradiction with f being a maximal element. In order to
define f̃ , it suffices to check that f̃(x0) can be defined, since

f̃(y + kx0) = f̃(y) + kf̃(x0) = f(y) + kf̃(x0)

is determined by f̃(x0). The only thing restricts the value of f̃(x0) is
f̃ ≤ p|dom(f̃), i.e. ∀y ∈ dom(f),∀k ∈ R \ {0} :{

f̃(y + kx0) ≤ p|dom(f̃) (y + kx0), k > 0;

f̃(y + kx0) ≤ p|dom(f̃) (y + kx0), k < 0;

i.e. ∀y ∈ dom(f),∀k ∈ R \ {0} :{
f̃(x0) ≤ p(y + kx0)/k − f̃(y)/k, k > 0;

f̃(x0) ≥ p(y + kx0)/k − f̃(y)/k, k < 0;

i.e. ∀y, z ∈ dom(f),∀k > 0, k′ < 0 :{
f̃(x0) ≤ p(y/k + x0)− f(y/k);
f̃(x0) ≥ −p(−z/k′ − x0)− f(z/k′).

Here I don’t care the case k = 0 since f̃(y) ≤ p|dom(f̃) (y) can be
deduced from f ≤ p|dom(f). Therefore, it suffices to show that ∀y, z ∈
dom(f),∀k > 0, k′ < 0 :

−p(−z/k′ − x0)− f(z/k′) ≤ p(y/k + x0)− f(y/k), (21)

And (21) holds. To see this, we can set k = −k′ = 1 and then

p(z − x0) + p(y + x0) ≥ p(y + z) ≥ f(y + z) = f(y) + f(z).

Then (21) implies
supS− ≤ inf S+.
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where

S− := {−p(−z/k′ − x0)− f(z/k′) ∈ R : z ∈ dom(f), k′ < 0},
S+ := {p(y/k + x0)− f(y/k) ∈ R : y ∈ dom(f), k > 0}.

Then f̃(x0) can be taken as an arbitrary number in the interval

[supS−, inf S+].

We’re done.

Back to linear normed space.

Theorem 9.2 (Hahn-Banach, general version). Let X be a linear
normed space over the field K and X0 ↪→ X is a subspace. Suppose
f ∈ X∗

0 , then there is f ∈ X∗ such that

1. f |X0
= f0;

2. ∥f∥X∗ = ∥f0∥X∗
0
.

In other words, f is an extension of f0 with the same norm.

Remark 9.1. Before the proof, we should have an observation: a
complex vector space can be viewed as a real vector space. For the
detail, see Proposition A.2.

Proof. To use Theorem 9.1, I will prove the case K = R first, which
can be applied for the case K = C.

Case 1: K = R. Let p be the norm defined as follows

p : X → R, x 7→ ∥f0∥X∗
0
∥x∥.

Then p is a semi-norm such that f0 ≤ p|X0
. Thus, Theorem 9.1

implies that there is a function f , an extension of f0 that satisfies
f ≤ p: for all x ∈ X

f(x) ≤ p(x),

f(x) = −f(−x) ≥ −p(x).

Thus |f(x)| ≤ p(x) and ∥f∥X∗ ≤ ∥f0∥X∗
0
, hence f ∈ X∗. The

reversed inequality holds since f |X0
= f0.
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Case 2: K = C. It can be shown that ∀h ∈ B(X,C), h is uniquely
determined by Re ◦h = Re(h) ∈ B(X,R). For all x ∈ X,

h(ix) = i
(
Reh(x) + i Imh(x)

)
= − Imh(x) + iReh(x),

take real parts for both sides and get − Imh(x) = Reh(ix). Thus

∀x ∈ X : h(x) = Reh(x)− iReh(ix).

Now, view X as a real vector space and suppose ∀x ∈ X, f0(x) =
g0(x)− ig0(ix), where g0 ∈ B(X,R). Define

p : X → R, x 7→ ∥g0∥B(X,R)∥x∥.

Then apply the result in 9.1.1 and we get ∃g ∈ B(X,R) such that(
g|X0

= g0
)
∧
(
g ≤ p

)
∧
(
∥g∥B(X,R) = ∥g0∥B(X0,R)

)
.

Then f : X → C, x 7→ g(x)− ig(ix) satisfies

(f |X0
= f0

)
∧
(
∥f∥X∗ = ∥f0∥X∗

0

)
.

The first is trivial and the second is true if ∥f∥X∗ ≤ ∥f0∥X∗
0
,

equivalently, ∀x ∈ X : |f(x)| ≤ p(x). To see this, let

θ : X → C, x 7→ (sign ◦f)(x).

Notice that | | ◦ θ : X → C is a constant function. Then ∀x ∈ X

|f(x)| = f(x) · θ(x)
= f

(
θ(x) · x

)
= g

(
θ(x) · x

)
(f(y) ∈ R ⇐⇒ f(y) = g(y))

≤ ∥g∥B(X,R) · ∥θ(x) · x∥X
= ∥g∥B(X,R) · |θ(x)| · ∥x∥X
= ∥g∥B(X,R) · ∥x∥X .

And
∥g∥B(X,R) = ∥g0∥B(X0,R) ≤ ∥f0∥X∗

0
.

Thereby, ∀x ∈ X : |f(x)| ≤ ∥f0∥X∗
0
∥x∥, i.e. ∥f∥X∗ ≤ ∥f0∥X∗

0
.

Theorem 9.2 is of great importance in the theory of “dual space of
Banach space”, which can be seen later.
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9.2 Lecture 9-2
Recall

We have studied

1. Theorem 7.6 (Resonance Theorem/ Uniformly bounded princi-
ple):

Let X be a Banach space and Y be a linear normed space.
Suppose {Tλ}λ∈Λ ⊆ B(X,Y ) satisfies: ∀x ∈ X∃Mx > 0 such
that supλ∈Λ∥Tλx∥Y < Mx. Then there is M > 0 such that
supλ∈Λ∥Tλ∥ < M .

2. Theorem 7.3(Open mapping Theorem):

(a) Let X,Y be two Banach spaces and T ∈ B(X,Y ) is a sur-
jection. Then T is an open mapping.

(b) Theorem 8.6.

3. Theorem 8.8(Closed graph Theorem):

For a mapping T : X → Y . the graph of T is G(T ) := {(x, Tx) :
x ∈ X} ↪→ X × Y . A mapping T is said to be closed if G(T ) is
closed.

Let X,Y be two Banach spaces and T ∈ L(X,Y ). Then T is a
closed operator implies T ∈ B(X,Y ).

4. Theorem 9.1 and Theorem 9.2 (Hahn-Banach Theorem):

Remark 9.2. This is one of the most important theorems for
functional analysis.

Here is an exercise that explains the name “Resonance Theorem”.

Exercise 9.2. Let X be a Banach space and Y be a linear normed
space. Suppose {Tλ}λ∈Λ ⊆ B(X,Y ) satisfies supλ∈Λ∥Tλ∥ = ∞. Show
that ∃x0 ∈ X such that supλ∈Λ∥Tλy∥Y =∞.

9.2.1 Review

Recall the definition of semi-norm

Definition (Semi-norm). Let X be a linear normed space. A function
p : X → R is said to be a semi-norm, if it satisfies:

1. For all x ∈ X, p(x) ≥ 0;
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2. For all x, y ∈ X, p(x+ y) ≤ p(x) + p(y);

3. For all x ∈ X, k ∈ K, p(kx) = |k|p(x).

Here is another way to state “semi-norm”.

Definition (Sub-additive). Let X be a linear normed space. A func-
tion f : X → R is said to be sub-additive if

∀x, y ∈ X : f(x) + f(y) ≤ f(x) + f(y).

Definition (Positive-homogeneity). Let X be a linear normed space.
A function f : X → R is said to be positive-homogeneous if

∀x ∈ X,α ∈ [0,∞) : f(αx) = αf(x).

Thus, a function p : X → R is a sub-linear functional if and only if
(p is sub additive ∧ p is positive-homogeneous). Let

X ′
+ := {f : X → R | f is sub-additive ∧ homogeneous}.

Theorem 9.3. Let X be a linear normed space over R and p ∈ X ′
+.

Suppose X0 ↪→ X and f ∈ L(X,R). Then

1. ∃f ∈ L(X,R) such that f |X0
= f ;

2. If f0 ≤ p|X0
, then f ≤ p.

1 is equivalent to the following commutative diagram

X0 R

X

f0

ι ∃f

Remark 9.3. We’ve prove this theorem, see 9.1. Why we need Zorn’s
lemma here? Suppose X0 ̸= X and x0 ∈ X \X0. Let M := span({x0}∪
X0) ↪→ X. Notice that dim

(
M \ X0

)
= 1. Thus, bu Mathematical

Induction, we can prove the case dim
(
X \X0

)
<∞. To get rid of the

assumption dim
(
X \X0

)
<∞, we need “Transfinite induction” in some

sense, which is relevant to the Axiom of Choice (equivalent to Zorn’s
lemma). And how do we apply Zorn’s lemma? Recall how do we define
the partially ordered set (F ,≤).

Theorem 9.4. Let X be a linear normed space over K, X0 ↪→ X and
f0 ∈ B(X0,K). Then
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1. there exists f ∈ B(X,K) such that f |X0
= f , i.e. the following

diagram commutes

X0 R

X

f0

ι ∃f

2. their norms coincide: ∥f∥X∗ = ∥f0∥X∗
0
.

Remark 9.4. Proof of this theorem (K = C case) needs an observation:
∀f ∈ L(X,C), f is uniquely determined by Re f since

∀x ∈ X, f(x) = f1(x)− if1(ix),

where f1 = Re(f).

Here is some corollaries of Theorem 9.4.

Corollary 9.5. Let X be a linear normed space over K, x0 ∈ X and
x0 ̸= 0. Then there is f ∈ X∗ such that f(x0) = ∥x0∥ and ∥f∥ = 1.

Proof. It suffices to show that there is some functional f ∈ X∗ such
that |f(x0)| = ∥x0∥, since we can multiply f by a constant sign

(
f(x0)

)
.

Let X0 := span{x0}, a subspace of X and

f0 : X0 → K, k · x0 7→ k · ∥x0∥.

Clearly ∀k ∈ K, |f0(kx0)| ≤ |k|∥x0∥ and ∥kx0∥ = |k|∥x0∥, thus ∥f0∥ ≤
1. And the inverse inequality holds, since

f
(
x0/∥x0∥

)
= 1, ∥x0/∥x0∥∥ = 1.

Then apply Theorem 9.4, there is a function f : X → C such that
f |X0

= f0 ∧ ∥f∥X∗ = ∥f0∥X∗
0
. And

f(x0) = f |X0
(x0) = f0(x0) = ∥x0∥.

For both Theorem 9.3 and Theorem 9.4, the extension doesn’t need
to be unique. But there is a result for some unique extension.

Exercise 9.3. Let X be a linear normed space and X0 ↪→ X is a dense
subspace. Suppose f0 ∈ X∗

0 , then there is a unique f ∈ X∗ such that
f |X0

= f0 and ∥f∥ = ∥f0∥. In other words, the following diagram
commutes.

X0 K

X

f0

ι ∃f
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Proof. Existence is ensured by Theorem 9.4.
Uniqueness: if there is another f ′ satisfies the commutative dia-

gram, then
f |X0

= f0 = f ′|X0
,

and two continuous functions that coincide on a dense subset must
coincide.

Corollary 9.6. Let X be a linear normed space and x1, x2 ∈ X satisfy
x1 ̸= x2. Then there is f ∈ X∗ such that f(x1) ̸= f(x2). In other
words, X∗ separates points of X.

Proof. Let x0 := x1 − x2 and apply Corollary 9.5.

Corollary 9.7. Let X be a linear normed space and x0 ∈ X. If
∀f ∈ X∗ : f(x0) = 0 then x0 = 0.

Proof. If x0 ̸= 0, apply Corollary 9.6 (set x1 = x0, x2 = 0) and get a
contradiction.

Here is a related exercise.

Exercise 9.4. Let X be a linear normed space and {0} ≠ X0 ↪→ X.
Suppose x0 ∈ X satisfies d(x0, X0) = ρ > 0. Then there is some f ∈ X∗

such that f(x0) = ρ and f |X0
= 0 (Hint: consider span({x0} ∪X0)).
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10 Week 10

10.1 Lecture 10-1
Recall

Hahn-Banach Theorem is important, and here is an example of its
applications.

Theorem. Let X be a linear normed space, X0 ↪→ X and f0 ∈ X∗
0 .

Then there is some function f ∈ X∗ such that f |X0
= f0 and ∥f∥X∗ =

∥f0∥X∗
0
.

Proof. See Theorem 9.4.

And it has a corollary:

Corollary 10.1. Let X be a linear normed space and 0 ̸= x0 ∈ X,
then there is some f ∈ X∗ such that ∥f∥X∗ = 1 and f(x0) = ∥x0∥.

Proof. See Corollary 9.5.

Furthermore, recall the exercise that ensures the completeness of
X∗ = B(X,K). Here is a corollary shows the duality. Notice that
∀f ∈ X∗, ∥f∥X∗ = sup∥x∥X≤1|f(x)|, where the sup is taken over all
f ∈ X∗ such that ∥f∥X∗ ≤ 1.

Corollary 10.2. There is another representation of ∥ ∥X , that’s ∀x ∈
X,

∥x∥X = max
∥f∥X∗≤1

|f(x)|,

where the max is taken over all x ∈ X such that ∥x∥X ≤ 1.

Remark 10.1. Notice that here we use max, rather than sup, i.e. the
sup is accessible.

Proof. WLOG, suppose x ̸= 0. Let A := sup∥f∥X∗≤1|f(x)|. On the
one hand, ∥x∥X ≥ A. Because ∀f ∈ X∗ such that ∥f∥X∗ ≤ 1, we have

|f(x)| ≤ ∥f∥X∗∥x∥X ≤ ∥x∥X .

On the other hand, ∥x∥ ≤ A and A is accessible. This follows from
Corollary 9.5, which also ensures that ∃g ∈ X∗, ∥g∥X∗ ≤ 1 with |g(x)| =
sup∥f∥X∗≤1|f(x)|.

Here is an exercise mentioned last time.
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Exercise 10.1. Let X be a linear normed space, X0 ↪→ X be a dense
subspace of X and f0 ∈ X∗

0 . Then ∃!f ∈ X∗ such that f |X0
= f0.

To do this, apply Theorem 9.2 and notice that two bounded func-
tional coincide on a dense subset must coincide. Furthermore, the func-
tion f above satisfies ∥f∥X∗ = ∥f0∥X∗

0
.

Here is an example that shows: the extension from Theorem 9.2 can
be not unique.

Example 23. Consider the normed space (R2, ∥ ∥1), where

∥ ∥1 : (x, y) 7→ |x|+ |y|

is equivalent to ∥ ∥2 since dim(R2) = 2 <∞ . In fact, (R2, ∥ ∥1) is just
(R, ∥ ∥1)

⊕
(R, ∥ ∥1). Let p2 : R2 → R, (x, y) 7→ y be the projection to

the second coordinate. Then

G := p−1
2 (0) = {(x, 0) ∈ R2 : x ∈ R}

is a closed subspace of R2 that’s isometric to R. Consider a functional
on G as follows:

f : G→ R, (x, 0) 7→ x.

It’s easy to see that ∥f∥G∗ = 1. We can directly construct lots of
extensions of f . To see this, define

fβ : R2 → R, (x, y) 7→ x+ βy

for all β ∈ R. Then ∥fβ∥(R2)∗ = 1 ∨ |β|. This can be checked by
taking (x, y) = (1, 0) (x, y) = (0, 1) and using the triangle inequality
|x+ βy| ≤ |x| + |β||y|. Thus, for all β ∈ [−1, 1], fβ ∈ (R2)∗ is an
extension of f with ∥fβ∥(R2)∗ = ∥f∥G∗ = 1. Furthermore, [−1, 1]
contains lots of elements, since

card[−1, 1] = cardR = card(N2) > cardN. (22)

The inequality card(N2) > cardN is known as a special case of Cantor’s
Theorem.

Here is a proof of “R is uncountable” using (22).

Proof. It suffices to show that N2 is uncountable, where 2 means a set
of exactly 2 elements, {∅, {∅}} or {−1, 1} for example. WLOG, let
2 = {−1, 1} then an element of N2 is just a sequence with values being
1 or −1. Suppose N2 is countable, i.e. N2 = {α(k) : k ∈ N} where αk is
a sequence whose values lie in {−1, 1}. Then consider the sequence

β : N→ {−1, 1}, n 7→ −α(n)n.
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In other words, β is a sequence whose values lie in {−1, 1} and satisfies
∀n ∈ N : βn ̸= α(n)n. Hence ∀k ∈ N : β ̸= α(k). While β ∈ N2, which
contradicts with N2 = {α(k) : k ∈ N}.

It’s possible that Hahn-Banach Theorem gives a unique extension.
Here is a proposition about this.

Definition (Strictly Convex). Let X be a linear normed space. Then
X is said to be strictly convex, if for all distinct x, y ∈ X with
∥x∥ = ∥y∥ = 1, we have ∥(x+ y)/2∥ < 1.

x+y
2

yx

0

Proposition 10.3. Let X be a linear normed space. If X∗ is strictly
convex, then the extension given by Hahn-Banach Theorem is unique.

Proof. Omitted. This is not our main goal.

10.1.1 Something about Dual Space

In this part, p ∈ [1,∞] and q = p′ = p/(p − 1) is the conjugate index
of p unless otherwise specified.

We have studied ℓp space and hence it’s natural to ask:

Question 10.1. What’s ℓ∗p ?

The following example answers a part of this question.

Example 24. We have ℓ∗1 ∼= ℓ∞.

Proof. I will construct a contraction φ : ℓ∞ → ℓ∗1 and its inverse that
is also a contraction. Then ℓ∞ ∼= ℓ∗1.

Let φ : ℓ∞ → ℓ∗1, α 7→ φα, where

φα : ℓ1 → K, x 7→
∑
n≥1

xnαn.

Hölder’s inequality implies that φα is well-defined and bounded, with
∥φα∥ℓ∗1 ≤ ∥α∥∞. In other words, φα is a bounded linear functional on
ℓ1 for each α ∈ ℓ∞. From ∥φα∥ℓ∗1 ≤ ∥α∥∞, we get ∥φ∥B(ℓ∞,ℓ∗1)

≤ 1.
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Then we define the inverse of φ. Let

en := ( 0, . . . , 0︸ ︷︷ ︸
n−1 terms

, 1, 0, . . .) for all n ∈ N

and ψ : ℓ∗1 → ℓ∞, f 7→ ψf , where ψfn = f(en),∀n ∈ N. Then ψ is well-
defined. What should be checked is just: ∀f ∈ ℓ∗1,

∥∥ψf∥∥∞ <∞, which
is right since

∀n ∈ N :
∣∣ψfn∣∣ = |f(en)| ≤ ∥f∥ℓ∗1∥en∥ℓ1 = ∥f∥ℓ∗1

implies that
∥∥ψf∥∥∞ ≤ ∥f∥ℓ∗1 and hence ∥ψ∥B(ℓ∗1 ,ℓ∞) ≤ 1. Now we prove

that φ : ℓ∞ → ℓ∗1 is an isometry, i.e. (φ ◦ ψ = idℓ∗1 ) ∧ (ψ ◦ φ = idℓ∞).

• For φ ◦ ψ = idℓ∗1 : let f ∈ ℓ∗1 be an arbitrary element. Then ψf is
a sequence in ℓ∞, such that ∀n ∈ N, ψfn = f(en),

φ ◦ ψ(f) = φ(ψf )

and hence for all x ∈ ℓ1 :

[φ ◦ ψ(f)](x) = [φ(ψf )](x)

=
∑
n≥1

xnψ
f
n

=
∑
n≥1

xnf(en)

=
∑
n≥1

f(xnen)

= lim
N→∞

N∑
n=1

f(xnen)

= lim
N→∞

f
( N∑
n=1

xnen

)

Here the limit is the usual limit for sequence in K and we will use
the continuity of f to pass the limit to the limit in ℓ1, in other
words, we want to find the limit (with respect to convergence in
norm) limN

∑N
n=1 xnen in ℓ1. It’s natural to guess the answer:
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just x. Since∥∥∥∥∥
N∑
n=1

xnen − x

∥∥∥∥∥
1

= ∥(0, . . . , 0, xN+1, xN+2, . . .)∥1

=
∑

n≥N+1

|xn|

= ∥x∥1 −
N∑
n=1

|xn|

converges to 0 as N →∞, and by continuity of f , we get

lim
N→∞

f
( N∑
n=1

xnen

)
= f

(
lim
N→∞

N∑
n=1

xnen

)
= f(x).

Above all, [φ ◦ ψ(f)](x) = f(x) holds for all x ∈ ℓ1. Thus, φ ◦
ψ(f) = f holds for all f ∈ ℓ∗1 and hence φ ◦ ψ = idℓ∗1 .

• For ψ ◦ φ = idℓ∞ : let α ∈ ℓ∞ be an arbitrary element. Then for
all α ∈ ℓ∞

ψ ◦ φ(α) = ψ(φα)

and ∀n ∈ N

[ψ ◦ φ(α)]n = [ψ(φα)]n = φα(en) = αn.

The last equality can be checked by definition of φα and en.
Therefore, [ψ ◦ φ](α) = α holds for all α ∈ ℓ∞, i.e. ψ ◦ φ = idℓ∞ .

Above all, φ is an isometry from ℓ∞ to ℓ∗1 and ℓ∞ ∼= ℓ∗1.

Remark 10.2. Verification of “φ is a bijection” is a little complex,
since the value of φ ◦ ψ at a point f ∈ ℓ∗1 is a map from ℓ1 to K. Just
keep in mind the domain and codomain of each map, and check equality
at each point.

Example 25. There is a norm on Kn such that

(Kn)∗ ∼= Kn,

where K is equipped with ∥ ∥2.

Proof. Consider the orthonormal basis of Kn, i.e.

ek := ( 0, . . . , 0︸ ︷︷ ︸
k−1 terms

, 1, 0, . . .),∀k ∈ [n].
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Then we set the basis of (Kn)∗ to be the dual basis of {ek : k ∈ [n]}.
In other words, we consider the base {φj : j ∈ [n]} defined by

∀j, k ∈ [n] : φj(ek) = δjk.

Then for all f ∈ (Kn)∗, we can write

f =

n∑
j=1

f(ej)φj .

And we define the norm on (Kn)∗

∥ ∥ : (Kn)∗ → R, f 7→
( n∑
j=1

|f(ej)|2
)1/2

.

It’s easy to verify that ∥ ∥ is a norm. Let

F : (Kn)∗ → Kn, f 7→
(
f(ej)

)
j∈[n]

=
(
f(e1), . . . , f(en)

)
,

which will be proved to be an isometry. Clearly F is surjective and
kerF = 0(∈ (Kn)∗), i.e. F is injective. What is left to prove is just

∀f ∈ (Kn)∗ : ∥F (f)∥2 = ∥f∥.

Let f ∈ (Kn)∗ be given. Then

∥F (f)∥2 =
∥∥∥(f(ej))j∈[n]

∥∥∥
2

=
( n∑
j=1

|f(ej)|2
)

= ∥f∥,

as we wanted.

Finally, try to finish this exercise by imitating what we have done
in Example 24.

Exercise 10.2. Prove that ℓ∗p ∼= ℓq for p ∈ (1,∞). (Hint: see Sec-
tion 8.1.1).

Remark 10.3. We have proved that ℓ∗p ∼= ℓq for all p ∈ [1,∞). How-
ever, it’s not very easy to study ℓ∗∞.
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10.2 Lecture 10-2
Recall

We have learnt
c0 ↪→ c ↪→ ℓ∞

in Example 4.

10.2.1 More Dual Spaces

Today, our first example is the dual space of c0.

Example 26. For K = R or C, we have

c∗0
∼= ℓ1.

Proof. To get an isometry, we need two contractions φ : ℓ1 → c∗0 and
ψ : c∗0 → ℓ1 such that (φ ◦ ψ = idc∗0 ) ∧ (ψ ◦ φ = idℓ1).

• Construction of φ: consider

φ : ℓ1 → c∗0, α 7→ φα,

where (c∗0 ∋)φα : c0 → K, x 7→
∑∞
n=1 xnαn. For all α ∈ ℓ1, the

functional φα is clearly well-defined (by Hölder’s inequality) and
linear. Moreover, Hölder’s inequality implies ∥φα∥c∗0 ≤ ∥α∥1 for
arbitrary α ∈ ℓ1. And linearity of φ is trivial. Thus ∥φ∥B(ℓ1,c∗0)

≤
1. Above all, φ is a contraction.

• Construction of ψ: consider

ψ : c∗0 → ℓ1, f 7→ ψf ,

where ψf is the sequence
(
f(en)

)
n∈N. Here {en ∈ c0 : n ∈ N} is

still the sequence

∀n ∈ N : en = ( 0, . . . , 0︸ ︷︷ ︸
n−1 terms

, 1, 0, . . .).

Now we check that ψf ∈ ℓ1 and
∥∥ψf∥∥

1
≤ ∥f∥c∗0 . For all n ∈ N,

let

A(n) =

n∑
j=1

sign
(
f(en)

)
en.

Then A(n) ∈ c0 satisfies
∥∥A(n)

∥∥
∞ = 1 for all n ∈ N. And

∀n ∈ N : f
(
An

)
=

n∑
j=1

sign
(
f(en)

)
f(en) =

n∑
j=1

|f(en)|. (23)
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Then (23) implies ∥f∥c∗0 ≥
∑n
j=1|f((en)| holds for all n ∈ N. Let

n→∞ and we get

∥f∥c∗0 ≥
∞∑
j=1

|f(ej)| =
∞∑
j=1

∣∣ψfn∣∣ = ∥∥ψf∥∥
1
.

Therefore, ∥ψ∥B(c∗0 ,ℓ1)
≤ 1, i.e. ψ is a contraction.

Now we check that both φ,ψ are the inverse of each another. For all
α ∈ ℓ1, we have φα ∈ c∗0 and (ψ ◦ φ)(α) ∈ ℓ1. And ∀n ∈ N,[

(ψ ◦ φ)(α)
]
n
= ψφα

n = φα(en) = αn,

which is easy to check. And hence (ψ ◦ φ)(α) = α. Since α ∈ ℓ1 is
arbitrary, we get ψ ◦ φ = idℓ1 and one direction is done. For another
direction, let f ∈ c∗0 be an arbitrary functional. Then ψf ∈ ℓ1, (φ ◦
ψ)(f) ∈ c∗0. For an arbitrary element x ∈ c0, we have

[
(φ ◦ ψ)(f)

]
(x) = φψf (x) =

∞∑
n=1

xnψ
f
n.

What is left to prove is just
∑∞
n=1 xnψ

f
n = f(x). That’s true, since

continuity of f implies
∞∑
n=1

xnψ
f
n =

∞∑
n=1

xnf(en)

= lim
N

N∑
n=1

xnf(en)

= lim
N
f
( N∑
n=1

xnen

)
= f

(
lim
N

N∑
n=1

xnen

)
.

And∥∥∥∥∥
N∑
n=1

xnen − x

∥∥∥∥∥
∞

= ∥(0, 0, . . . , xN+1, xN+2, . . .)∥∞ → lim sup
n
|xn| = 0

as N →∞, since x ∈ c0 =⇒ lim supn|xn| = limn|xn| = 0. Thus

f
(
lim
N

N∑
n=1

xnen

)
= f(x),
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and hence φψf (x) =
∑∞
n=1 xnψ

f
n = f(x). Since x is arbitrary, we get

(φ ◦ ψ)(f) = f for all f ∈ c∗0. And f is also arbitrary, so φ ◦ ψ = idc∗0 .
Above all, both φ,ψ are isometries and c∗0 ∼= ℓ1.

Example 27. Set K = R in this example. Let

BV [a, b] := {f ∈ R[a, b] : f is of bounded variance},
BV0[a, b] := {f ∈ BV [a, b] : f(a) = 0},
BV +

0 [a, b] = {f ∈ BV0 : f is right continuous}.

Then the dual space of C[a, b] is isometric to BV +
0 [a, b]:(

C[a, b]
)∗ ∼= BV +

0 [a, b],

where the functional induced by ρ ∈ C[a, b] is

φρ : C[a, b]→ C, f 7→
∫ b

a

f(x) dρ(x),

the Riemann-Lebesgue integral of f with respect to ρ.

Example 28. For all σ-finite measure space (Ω,F , µ) we have

∀p ∈ [1,∞) :
(
Lp(Ω,F , µ)

)∗ ∼= Lq(Ω,F , µ),

where q = p′.

10.2.2 Weak Convergence

Here comes important topics of Functional Analysis. Recall that for
a linear normed space X and (xn)n∈N ⊆ X,x ∈ X. We say that
the sequence (xn)n∈N converges to x in norm, if limn∥xn − x∥ = 0,

denoted by (xn)n∈N
∥ ∥−−→ x. This is the classical convergence mode

(hence we usually omit “in norm” and “∥ ∥”, writing “(xn)n∈N converges
to x” and “(xn)n∈N → x”) and we will encounter more convergence
modes now.

From now on, we don’t distinguish = and ∼=, i.e. we see two iso-
metric spaces to be same.

Definition (Weak Convergence). Let X be a linear normed space and
(xn)n∈N ⊆ X,x ∈ X. If for all f ∈ X∗ we have limn f(xn) = f(x),
then we say (xn)n∈N converges to x weakly, written (xn)n∈N

w−→ x or
(xn)n∈N

ω−→ x or (xn)n∈N ⇀ x.

And here is a similar but different notion
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Definition (Weak∗ convergence). Let X be a linear normed space and
(fn)n∈N ⊆ X∗, f ∈ X∗. If for all x ∈ X we have limn fn(x) = f(x),
then we say (fn)n∈N converges in the weak star topology to f , written
(fn)n∈N

w∗−−→ f or (fn)n∈N
ω∗−−→ f or (fn)n∈N ⇀∗ f (read as “weak star

convergence”).

Remark 10.4. Weak convergence is a property of sequence in X while
weak∗ convergence is a property of sequence in X∗.

Here are some examples.

Example 29. Consider the linear normed space ℓp, where p ∈ [1,∞).
The sequence (en)n∈N ⊆ ℓp converges weakly to 0(∈ ℓp) but doesn’t
converge to 0 in norm.

Proof. We prove as follows

• Weak convergence: let f ∈ ℓ∗p, then it suffices to prove

lim
n
f(en) = f(0) = 0.

While f has the representation

ℓq ∋ ψf =
(
f(en)

)
n∈N

and hence limn f(en) = 0 as we wanted.

• Convergence in norm: since ∥en∥p = 1 for all n ∈ N.

It’s easy to prove that

Theorem 10.4. Let X be a linear normed space and (xn)n∈N ⊆ X,
then

(xn)n∈N
∥ ∥−−→ x =⇒ (xn)n∈N ⇀

∗ x.

Now we’re going to the bi-dual space, for which we need some no-
tions relevant to natural embedding.

Definition (Induced Functional). Let X be a linear normed space.
For all x ∈ X, we define a functional on X∗, denoted by x̂ with rules

x̂ : X∗ → K, f 7→ f(x).

From this definition, we have

Claim. For all x ∈ X, the functional x̂ is bounded, i.e. x̂ ∈
(
X∗)∗.
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Proof. For all f ∈ X∗, we have

|x̂(f)| = |f(x)| ≤ ∥f∥X∗∥x∥,

which implies ∥x̂∥X∗∗ ≤ ∥x∥.

For convenience, we define

Definition (Bidual Space). For a linear normed space, the space
(
X∗)∗

is called the bidual space of X, usually denoted by X∗∗.

The induced functional connects the space X and X∗∗ in the fol-
lowing meaning.

Definition (Natural Embedding). Let X̂ := {x̂ : x ∈ X}. The map-
ping ι defined as follows is called the natural embedding of X

ι : X → X̂, x 7→ x̂.

For x ∈ X, x̂ is also denoted by ιx.

From definition, we see that ι is surjective. Moreover, we have
proved that ι is contractive. In fact, ι is an isometry. It suffices to
show that ∥ι(x)∥ ≥ ∥x∥ for all x ∈ X. By definition

∥ιx∥X∗∗ = sup
f∈X∗

∥f∥X∗≤1

|ιx(f)| = sup
f∈X∗

∥f∥X∗≤1

|f(x)| ≥ ∥x∥,

the last inequality of which follows from a corollary of Hahn-Banach
Theorem, see Corollary 9.5. Thus, for all x ∈ X we have ∥ιx∥X∗∗ = ∥x∥.
Above all, we have X ∼= X̂ where the isometry is ι.

Theorem 10.5. Let X be a linear normed space and (fn)n∈N ⊆
X∗, f ∈ X∗. If (fn)n∈N ⇀ f in X∗, then (fn)n∈N ⇀

∗ f .

Proof. Suppose (fn)n∈N ⇀ f , i.e. ∀F ∈ X∗∗ : limn F (fn) = F (f).
Then for any x ∈ X, ιx ∈ X∗∗ and hence limn ιx(fn) = ιx(f), i.e.
limn fn(x) = limn f(x). Then by arbitrariness of x, we have proved
(fn)n∈N ⇀

∗ f .

Remark 10.5. This theorem is another natural description of the in-
clusion X ↪→ X∗∗

The reversed proposition of Theorem 10.5 is wrong, as the following
counter example.
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Example 30. Here we give an example, with a linear normed space
X and (fn)n∈N ⊆ X∗, f ∈ X∗ such that(

(fn)n∈N ⇀
∗ f

)
∧
(
(fn)n∈N ̸⇀ f

)
.

WLOG, set f = 0, else we can replace (fn)n∈N by (fn − f)n∈N. We
want something like the following graph

0 X c0

fn X∗ ℓ1

0 X∗∗ ℓ∞

∈
̸

∗

It’s natural to consider the case that X ̸= X∗∗ for which we have learnt
a example: X = c0 with X∗ = ℓ1, X

∗∗ = ℓ∞. Consider the sequence

(en)n∈N ⊆ X∗ = ℓ1,

where the m-th term of en is δmn for all m,n ∈ N.

Verification. For convenience, we denote φa by a, i.e. a(x) = φa(x) =∑
n≥1 anxn for all x. Then

• (en)n∈N ⇀
∗ 0: for all a ∈ X = c0, we have

lim
n
en(a) = lim

n

∞∑
j=1

δjnaj = lim
n
an = 0

since a ∈ c0. Thus (en)n∈N ⇀
∗ 0.

• (en)n∈N ̸⇀ 0: consider the sequence 1 = (1)n∈N ∈ X∗∗ = ℓ∞,
i.e. the sequence whose all elements are 1. Then

lim
n

1(en) = lim
n

∞∑
j=1

δjn = lim
n

1 = 1 ̸= 0.

Thus (en)n∈N ̸⇀ 0.

Weak convergence defines weak limit, which is unique.

Proposition 10.6. Let X be a linear normed space. Suppose

((xn)n∈N ⇀ x) ∧ ((xn)n∈N ⇀ y)

where x, y ∈ X, (xn)n∈N ⊆ X. Then x = y.
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Proof. For all f ∈ X∗, we have

lim
n
f(xn) = f(x), lim

n
f(xn) = f(y)

from the definition of weak convergence. Since
(
f(xn)

)
n∈N is a sequence

in K, whose limit is unique, we have f(x) = f(y). While f is arbitrary,
if x ̸= y, Hahn-Banach Theorem implies that there is some f0 ∈ X∗

that distinguishes x and y, contradiction. Above all, x = y.

Finally, here is a theorem that describes weak convergence.

Theorem 10.7. Let X be a linear normed space. Suppose (xn)n∈N ⊆
X and x ∈ X. Then (xn)n∈N ⇀ x if and only if the following 2
conditions hold:

1. supn∥xn∥ <∞;

2. ∃G ⊆ X∗ with spanG = X∗ such that

∀g ∈ G :
(
g(xn)

)
n∈N → g(x).

Proof. Sufficiency: for all f ∈ spanG, we have f =
∑m
j=1 kjgj , where

gj ∈ G, kj ∈ K(∀j ∈ [m]). Thus

lim
n
f(xn) = lim

n

m∑
j=1

kjgj(xn) =

m∑
j=1

kj lim
n
gj(xn) =

m∑
j=1

kjgj(x) = f(x).

Therefore we can suppose G ↪→ X∗ with G = X∗. By the density, for
all ε > 0 and all f ∈ X∗, there is g ∈ G such that ∥g − f∥X∗ < ε. Let
M := supn∥xn∥ and apply the triangle inequality:

|f(xn)− f(x)|
≤ |f(xn)− g(xn)|+ |g(xn)− g(x)|+ |g(x)− f(x)|
≤ ∥f − g∥X∗∥xn∥X + |g(xn)− g(x)|+ ∥g − f∥X∗∥x∥X
≤ εM + |g(xn)− g(x)|+ ε∥x∥X .

Since
(
g(xn)

)
n∈N → g(x), there is N ∈ N such that

∀n > N : |g(xn)− g(x)| < ε.

Then ∀n > N

|f(xn)− f(x)| ≤
(
M + ∥x∥X + 1

)
ε,
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which implies limn f(xn) = f(x) since ε > 0 is arbitrary. Therefore,
(xn)n∈N ⇀ x since f ∈ X∗ is arbitrary.

Necessity: For the first condition, consider the natural embedding
ι : : X → X∗∗. Then for all f ∈ X∗, the sequence

(
f(xn)

)
n∈N in K is

convergent and hence bounded. Thus

∀f ∈ X∗ : sup
n∈N
|f(xn)| = sup

n∈N
|x̂n(f)| <∞.

Then, Theorem 7.6 implies that supn∥x̂n∥X∗∗ is finite, i.e. supn∥xn∥ is
finite. For the second condition, consider G = X.

Here are some examples of application of Theorem 10.7.

Example 31. For p ∈ (1,∞), consider the space ℓp. Then Theo-
rem 10.7 means that: suppose

(
X(n)

)
n∈N ⊆ ℓp and X ∈ ℓp, then(

X(n)
)
n∈N ⇀ X if and only if the following 2 conditions hold.

1. supn
∥∥X(n)

∥∥
p
<∞;

2. ∀i ∈ N : limnX
(n)
i = Xi.

Proof. Sufficiency: take G = {en : n ∈ N} and the second point is
done, if spanG = ℓq and that’s true. To see this, let x ∈ ℓq be given.
Then for all ε > 0, there is some N ∈ N such that∑

j>N

|xj |q < εq,

i.e. ∥∥∥∥∥∥x−
N∑
j=1

xjej

∥∥∥∥∥∥
q

=
( ∑
j>N

|xj |q
)1/q

< ε.

Then apply Theorem 10.7.
Necessity: it suffices to show the second condition, since the first

condition is guaranteed by Theorem 10.7. For all i ∈ N, consider ei ∈ ℓq
then we have

Xi = ei(X) = lim
n
ei
(
X(n)

)
= lim

n

∞∑
j=1

δijX
(n)
j = lim

n
X

(n)
i .

Remark 10.6. Here we restrict p /∈ {1,∞}. Since

• For p = 1, then q =∞ and spanG is not dense in ℓq;

• For p =∞, the dual space ℓ∗p is almost unknown.
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Example 32. Let a σ-finite measure space (Ω,F , µ) and p ∈ (1,∞)
be given. Suppose (fn)n∈N ⊆ Lp, f ∈ Lp, then (fn)n∈N ⇀ f if and only
if the following 2 conditions hold.

1. supn∥fn∥p <∞;

2. ∀E ∈ F with µ(E) <∞, we have

lim
n

∫
Ω

fnχE dµ =

∫
Ω

fχE dµ.

Proof. Sufficiency: take G = {χE : (E ∈ F) ∧ (µ(E) < ∞)}, then
spanG is the set of all integrable simple functions on Ω, which is dense
in Lp. Then apply Theorem 10.7.

Necessity: The first condition is guaranteed by Theorem 10.7. And
the second condition is also satisfied. Let E ∈ Ω such that µ(E) < ∞
be given, then χE ∈ Lq and hence

lim
n

∫
Ω

fχE dµ = lim
n
χE(fn) = χE(f) =

∫
Ω

fχE dµ,

where χE means the functional

φχE
: Lp → K, f 7→

∫
Ω

fχE dµ.

Remark 10.7. Here we restrict p /∈ {1,∞} for the same reason as the
previous example. And we used the fact that L∗

p
∼= Lq, which needs

the assumption that (Ω,F , µ) is σ-finite.
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11 Week 11

11.1 Lecture 11-1
Something about biduality: let X be a linear normed space, then the
space X∗∗ is complete and the natural embedding ι : is a injection
keeping norms. Thus, the pair (X∗∗, ι) is a completion of X, which
ensures the existence of completion.

11.1.1 More about Weak Convergence and Weak-star Con-
vergence

Let X be a linear normed space and (xn)n∈N ⊆ X,x ∈ X. There are 3
modes of convergence on X:

(xn)n∈N → x ⇐⇒ limn∥xn − x∥ = 0,

(xn)n∈N ⇀ x ⇐⇒ ∀f ∈ X∗ : limn f(xn) = f(x),

(xn)n∈N ⇀
∗ x ⇐⇒ ∀y ∈ X∗ : limn xn(y) = limn x(y),

where X∗ is a linear normed space such that (X∗)
∗ = X, called the

pre-dual space of X,if exists (so we don’t talk the weak-∗ convergence
on X is not the dual space of any linear normed space).The definition
of (xn)n∈N ⇀

∗ x is just viewing X as the dual space of X∗, as we learnt
late week.

Example 33. Consider c∗0 = ℓ1, ℓ
∗
1 = ℓ∞. Then c0 is the pre-dual space

of ℓ1 and we can discuss the 3 modes of convergence on ℓ1: →,⇀,⇀∗ .

Weak convergence and weak-star convergence generalize the notion
of convergence, and in fact, they generalize the notion of boundedness.

Definition (Boundedness). Let X be a linear normed space and A ⊆
X, then A is said to be bounded if

∃M > 0: ∀x ∈ A, ∥x∥ < M.

Definition (Weak Boundedness). Let X be a linear normed space and
A ⊆ X, then A is said to be weakly bounded, if

∀f ∈ X∗∃Mf > 0 such that ∀x ∈ A, |f(x)| ≤Mf .

Definition (Weak ∗- Boundedness). Let X be a linear normed space
and A ⊆ X, then A is said to be weak-star bounded, if

∀y ∈ X∗∃My > 0 such that ∀x ∈ A, |x(y)| ≤My.
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Here is a simple exercise about them.

Exercise 11.1. For a linear normed space X and A ⊆ X, show that
A is bounded if and only if A is weak-bounded.

Our classmate, Chen Li gave a convergence mode:

Definition. Let X be a linear normed space and (xn)n∈N ⊆ X,x ∈
X. If for all f ∈ X∗, (fn)n∈N ⊆ X∗ such that (fn)n∈N ⇀∗ f , we
have limn fn(xn) = f(x), then (xn)n∈N converges to x, denoted by
(xn)n∈N

l−→ x.

Claim. This convergence mode is not equivalent to weak convergence.

Proof. Suppose (xn)n∈N
l−→ x. Let an arbitrary functional f ∈ X∗

be fixed. Define a sequence (fn)n∈N ⊆ X∗: ∀n ∈ N, fn = f . Then
(fn)n∈N ⇀

∗ f and hence

f(x) = lim
n
fn(xn) = lim

n
f(xn).

Since f is arbitrary, we have (xn)n∈N ⇀ x.
Let X = H be a Hilbert space with a countable orthonormal basis

(xn)n∈N. Corollary 12.9 implies that (xn)n∈N ⇀ 0. Consider the Riesz
map φH , then (φHxn

)n∈N ⇀
∗ 0 as you should verify. But limn φ

H
xn
(xn) =

1 ̸= 0.

Weak topology is a topological notion:

Definition (Weak Topology). Let X be a topological space and F be
a family of functions f : X → cod(f), where cod(f) is a topological
space for each f ∈ F . The weak topology of X with respect to F is
the smallest topology such that for all f ∈ F is continuous.

Example 34. For a family of topological space {Xi : i ∈ I}, the prod-
uct topology on X :=

∏
i∈I Xi is the weak topology of X with respect

to the family of projection {πi : X → Xi | i ∈ I}.

For a linear normed space, we usually mean the weak topology with
respect to X∗ to be the weak topology of X. Similarly we define the
weak∗-topology on X∗ to be the weak topology of X∗ with respect to
X̂. In other words, the weak∗-topology on X∗ is the smallest topology
such that for all x ∈ X, the functional x̂ is continuous on X∗.

Now, we can define closure for A ⊆ X with respect to each topology,
which is important to check whether a set is closed or not. To be
clear, let ∥ ∥, ω, ω∗ denote the closure operator of norm topology, weak
topology and weak∗ topology (if pre-dual space exists) respectively.
There is a natural question:
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Question 11.1. Let a linear normed space X and a subset X0 be
given. What’s the order relation for this 3 closure: X0

∥ ∥
, X0

ω
, X0

ω∗
?

Answer and Proof. When X = (X∗)
∗ exists, the relation is

X0
∥ ∥ ⊆ X0

ω ⊆ X0
ω∗
.

It suffices to see that T∥ ∥ ⊆ Tω ⊆ Tω∗, where the T means the topology
induced by its subscript. We know T∥ ∥ ⊇ Tω since ∀f ∈ X∗, we know
f is continuous when X is equipped with T∥ ∥. Moreover, we know
Tω ⊇ Tω∗ since X̂∗ ⊆ (X∗)

∗∗ = X∗, as we wanted.
When X = (X∗)

∗ doesn’t exist, we have just X0
∥ ∥ ⊆ X0

ω
.

11.1.2 Conjugate Operators

For 2 linear normed spaces X,Y and a map T : L(X,Y ), we have al-
ready seen the dual spaces of X,Y . We want a linear operator T ∗ such
that ∀x ∈ X∀f ∈ Y ∗, we have (T ∗f)(x) = f

(
T (x)

)
. Also we denote

f(x) =: ⟨f, x⟩ for x ∈ X, f ∈ Y ∗ as the notation of inner product.
Thus, we want T ∗ such that

x ∈ X T−−−−→ Y ∋ Tx

T ∗f ∈ X∗ ←−−−−
T∗

Y ∗ ∋ f
⟨f, Tx⟩ = ⟨T ∗f, x⟩ .

Such T ∗ exists if T ∈ B(X,Y ).

Theorem 11.1. Let 2 linear normed spaces X,Y and a map T ∈
B(X,Y ) be given, then:

1. such T ∗ exists and is unique;

2. we have ∥T∥ = ∥T ∗∥.

Proof. Existence and Uniqueness: we define T ∗ as the following com-
mutative diagram

X Y

K

T

T∗f
f

i.e. T ∗ : Y ∗ → X∗, f 7→ f ◦T . For all f ∈ Y ∗ we have f ◦T ∈ X∗ since
∥f ◦ T∥ ≤ ∥f∥ · ∥T∥. This definition satisfies:

∀x ∈ X,∀f ∈ Y ∗ : ⟨f, Tx⟩ = ⟨T ∗f, x⟩ ,
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which can be easily verified. Existence is ensured. Furthermore, if
another map F : Y ∗ → X∗ satisfies:

∀x ∈ X,∀f ∈ Y ∗ : ⟨f, Tx⟩ = ⟨Ff, x⟩ ,

then we have F = T ∗. To see this, let an arbitrary f ∈ Y ∗ be given
and we prove that T ∗f = Ff . For all x ∈ X:

⟨Ff, x⟩ = ⟨f, Tx⟩ = ⟨T ∗f, x⟩ ,

thus Ff = T ∗f . Above all, F = T ∗ and hence T ∗ is unique.
Norms coincide: one direction was done since ∥f ◦ T∥ ≤ ∥f∥ · ∥T∥.

For another direction: apply Corollary 10.2

∥T∥ = sup
x∈X
∥x∥≤1

∥Tx∥Y

= sup
x∈X
∥x∥≤1

sup
f∈Y ∗

∥f∥≤1

|f(Tx)|

= sup
x∈X
∥x∥≤1

sup
f∈Y ∗

∥f∥≤1

|(T ∗f)(x)|

≤ sup
x∈X
∥x∥≤1

sup
f∈Y ∗

∥f∥≤1

∥T ∗∥ · ∥f∥ · ∥x∥

≤ ∥T ∗∥,

as we wanted. Above all, ∥T ∗∥ = ∥T∥.

Remark 11.1. You should check that: for all linear normed spaces
X,Y, Z and bounded linear operators X f−→ Y

g−→ Z, we have g ◦ f is a
bounded linear map with ∥g ◦ f∥ ≤ ∥g∥ · ∥f∥.

Here is an example from Linear Algebra.

Example 35. Let a linear map T : Kn → Km be given, then it must
be bounded. Thus there is T ∗ : (Km)∗ → (Kn)∗. Though we have
proved that (Kn)∗ ∼= Kn, we won’t apply the result here. Consider the
standard basis of Kn: {ej : j ∈ [n]}, where

∀j ∈ [n] : ej = ( 0, . . . , 0︸ ︷︷ ︸
j−1 terms

, 1, . . .).

Similarly, consider the basis of Km: {µk : k ∈ [m]}. Then the operator
T is corresponded to a matrix MT , since

∀j ∈ [n] : Tej =

m∑
k=1

aj,kµk,
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whose corresponding matrix is MT = (aj,k)
j∈[n]
k∈[m]. And now we consider

the basis of (Kn)∗ and (Km)∗ to get the matrix of T ∗. There is a related
exercise, see Exercise 9.4. Let

Yk := span{ej : j ∈ [n] \ {k}},∀k ∈ [n]

then Exercise 9.4 implies ∃e∗k ∈ (Kn)∗ such that e∗k(ek) = d(ek, Yk) > 0
and e∗k|Yk

= 0. In fact, d(ek, Yk) = 1. Thus e∗k(ej) = δkj .

Definition (Dual Basis). For linear normed space Kn, the basis of
(Kn)∗ defined as above, i.e. {e∗k ∈ (Kn)∗ : k ∈ [n]} is called the dual
basis of {ek ∈ Kn : k ∈ [n]}.

Now we are going to find MT∗ . Suppose MT∗ = (bj,k)
j∈[m]
k∈[n] . From

T ∗ (Km)∗ (Kn)∗

{µ∗
j : j ∈ [m]} {e∗k : k ∈ [n]}

:

∪ ∪

we get T ∗µ∗
j =

∑n
l=1 bj,le

∗
l for all j ∈ [m]. From the definition of T ∗:

we have 〈
T ∗µ∗

j , el
〉
=

〈
µ∗
j , T el

〉
,

and apply T ∗µ∗
j =

∑n
k=1 bj,ke

∗
k, T el =

∑m
k=1 al,kµk to get

bj,l = al,j

for all l ∈ [n], j ∈ [m]. In other words, MT∗ = tMT .

Example 35 means: transpose matrices are the special case of dual
operators. Recall that, for all matrix M , we have ttM =M and hence

∀T ∈ B(X,Y ) : T ∗∗ = T,

in some sense for 2 arbitrary linear normed spaces X,Y . Above all

Corollary 11.2. For arbitrary linear normed spaces X,Y, Z and T ∈
B(X,Y ), S ∈ B(Y,Z):

1. T ∗∗ ◦ ιX = ιY ◦T , where ιX , ιY is the natural embedding of X,Y
respectively;

2. (idX)∗ = idX∗ ;

3. (T ◦ S)∗ = S∗ ◦ T ∗.

Page 117 of 198



11.2 Lecture 11-2 11 WEEK 11

Proof. What we want is: the following diagram commutes

X
ιX−−−−→ X∗∗

T

y yT∗∗

Y −−−−→
ιY

Y ∗∗

Remember that Y ∗∗ =
(
Y ∗)∗. For all x ∈ X, f ∈ Y ∗, we have[

(ιY ◦ T )(x)
]
(f) =

[
ιY (Tx)

]
(f)

=
[
T̂ x

]
(f)

= f(Tx)

= (f ◦ T )(x),

and [(
T ∗∗ ◦ ιX

)
(x)

]
(f) =

[
T ∗∗(x̂)

]
(f)

= ⟨T ∗∗(x̂), f⟩
= ⟨x̂, T ∗f⟩
= ⟨T ∗f, x⟩
= ⟨f ◦ T.x⟩
= (f ◦ T )(x).

Therefore, [
(ιY ◦ T )(x)

]
(f) =

[(
T ∗∗ ◦ ιX

)
(x)

]
(f)

holds for all f ∈ Y ∗, x ∈ X, i.e.[
(ιY ◦ T )(x)

]
=

(
T ∗∗ ◦ ιX

)
(x)

holds for all x ∈ X. Hence

ιY ◦ T = T ∗∗ ◦ ιX .

The rest is easy.

11.2 Lecture 11-2
Recall

We studied conjugate operators last time: for f ∈ Y ∗ and T ∈ B(X,Y ),
the functional T ∗f is defined by

⟨T ∗f, x⟩ = ⟨f, Tx⟩ ,∀x ∈ X.
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11.2.1 Compact Operators and Finite-rank Operators

This lecture was given by our classmate Kangwen Zhang.

Definition (Compact Operator). Let X,Y be 2 linear normed spaces
and T ∈ L(X,Y ). If for all A ⊆ X that is bounded, we have T (A) is
relatively compact in Y , then T is said to be a compact operator.
The set of all compact operators from X to Y is denoted by C(X,Y ).
In the case that Y = X, the set C(X,Y ) is written C(X).

Remark 11.2. The following statements are equivalent:

1. T is compact;

2. T (BX) is relatively compact, where BX := {x ∈ X : ∥x∥ < 1};

3. For all bounded sequence (xn)n∈N ⊆ X, there is a subsequence
(xnk

)k∈N such that (Txnk
)k∈N converges in Y .

Remark 11.3. The C of C(X,Y ) means “compactness”, not “continu-
ity”.

Definition (Finite-Rank Operator). Let 2 linear normed spaces X,Y
be given. If T ∈ B(X,Y ) satisfies dim(ImT ) <∞, then T is called an
operator of finite rank. The set of all finite-rank operators from X to
Y is denoted by Fr(X,Y ). In the case that Y = X, the set Fr(X,Y )
is written Fr(X).

Remark 11.4. There are some books that don’t require finite-rank
operators to be bounded. We require this, since we don’t care much
about operators that are not continuous.

We don’t need a compact operator to be continuous in the definition,
because

Proposition 11.3. For 2 linear normed spaces X,Y , we have

C(X,Y ) ⊆ B(X,Y ).

Proof. suppose T ∈ C(X,Y ), then T (BX) is relatively compact, i.e.
T (BX) is compact and hence bounded. Therefore, T (BX) is bounded
and so is T .

In fact, we have

Proposition 11.4. For 2 linear normed spaces X,Y , we have

C(X,Y ) ↪→ B(X,Y ).
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Proof. For addition: let S, T ∈ C(X,Y ) be 2 arbitrary compact opera-
tors. Let (xn)n∈N ⊆ X be an arbitrary bounded sequence. Then there
is a subsequence (still denoted by (xn)n∈N) such that (Txn)n∈N con-
verges in Y . Furthermore, since S is compact: there is a subsequence
(xnk

)k∈N such that (Sxnk
)k∈N converges in Y . Therefore, (xnk

)k∈N
is a subsequence of the original (xn)n∈N such that

(
(T + S)xnk

)
k∈N

converges. Above all, T + S is compact.
For multiplication with scalars: let T ∈ C(X,Y ) and λ ∈ K. Let

(xn)n∈N ⊆ X be an arbitrary bounded sequence. Then there is a sub-
sequence such that (Txnk

)k∈N converges in Y and then
(
λT (xnk

)
)
k∈N

also converges. Therefore, λT ∈ C(X,Y ).

Remark 11.5. Proof of addition part is similar to the proof this propo-
sition: a bounded sequence (xn, yn)n∈N ⊆ R2 has a convergent subse-
quence. Let

(
xnk

)
k∈N ⊆ (xn)n∈N be a convergent subsequence, then(

ynk

)
k∈N is a bounded sequence in R. Take a convergent subsequence

of
(
ynk

)
k∈N and we’re done.

Similar to Exercise 8.1, we have

Proposition 11.5. Let a linear normed space X and a Banach space
Y be given. The space C(X,Y ) is a closed subspace of B(X,Y ).

Remark 11.6. This implies that C(X,Y ) is a Banach space whenever
Y is a Banach space, since B(X,Y ) is a Banach space.

Proof. Let (Tn)n∈N ⊆ C(X,Y ) be a convergent sequence of compact
operators with limit T ∈ B(X,Y ). We want T ∈ C(X,Y ). Since Y is a
Banach space, T (BX) ⊆ Y is relatively compact if and only if T (BX) is
totally bounded (see Corollary 6.4). Let ε > 0 be an arbitrary number.
Suppose N ∈ N satisfies: ∀n > N, ∥Tn − T∥ < ε. Fix some n > N and
we have Tn(BX) is relatively compact and hence totally bounded in Y ,
i.e. ∃{xj ∈ BX | j ∈ [m]} such that

Tn(BX) ⊆
⋃
j∈[m]

B(Tnxj , ε).

Now we have a claim: {Txj | j ∈ [m]} is a 4ε-net of T (BX). To see this,
let an arbitrary element x ∈ BX be given, then there is some j ∈ [m]
such that ∥Tnxj − Tnx∥ < ε. Thus

∥Txj − Tx∥ ≤ ∥Txj − Tnxj∥+ ∥Tnxj − Tnx∥+ ∥Tnx− Tx∥
≤ ∥T − Tn∥∥xj∥+ ε+ ∥Tn − T∥∥x∥
≤ ε+ ε+ ε

< 4ε.
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where we used triangle inequality, definition of operator norm, defini-
tion of unit ball and so on. Therefore, {Txj ∈ T (BX) | j ∈ [m]} is a
4ε-ball of T (BX) and hence T (BX) is totally bounded.

Now we prove that: an operator of finite rank must be compact.

Proposition 11.6. Let 2 linear normed spaces X,Y be given. We
have

Fr(X,Y ) ⊆ C(X,Y ).

Proof. Since dim(ImT ) < ∞, we know that ImT is complete. Then
for all bounded set A ⊆ X, the set T (A) ⊆ ImT is bounded and hence
T (A) is bounded. While dim(ImT ) < ∞, we know T (A) is compact
from Theorem 6.8. Thus T (E) is relatively compact and hence T is
compact.

In fact, the set of all operators of finite rank is a subspace of the
space C(X,Y ).

Proposition 11.7. Let 2 linear normed spaces X,Y be given. Then

Fr(X,Y ) ↪→ C(X,Y ).

Proof. Clearly 0 ∈ Fr(X,Y ). We prove addition only.

It’s natural to consider the cast that the codomain of an operator
is a finite dimensional space:

Proposition 11.8. Let 2 finite-dimensional linear normed spaces X,Y
be given. Then we have

L(X,Y ) = Fr(X,Y ) = C(X,Y ).

Remark 11.7. The space X is also needed to be finite-dimensional.
To see this, set Y = K and find some space X that X♯ ̸= X∗.

Proof. It suffices to prove that ∀T ∈ L(X,Y ), we have T ∈ Fr(X,Y ).
Since dim(ImT ) ≤ dim(Y ) < ∞, what needs to be proved is just
T ∈ B(X,Y ). It’s clear that L(Km,Kn) = B(Km,Kn) and L(X,Y ) =
B(X,Y ) follows from the following commutative diagram

X
T−−−−→ Y

φ

x xψ
Km −−→

∃!LT

Kn

where φ,ψ are isomorphisms. In other words, T = ψ−1 ◦ LT ◦ φ is
composition of bounded linear maps.
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The following proposition tells some structure about the 3 spaces
C(X,Y ),Fr(X,Y ) and B(X,Y ).

Proposition 11.9. Let 3 linear normed spaces X,Y, Z and bounded
linear operators T : X → Y, S : Y → Z be given. Then S ◦T is compact
whenever one of S, T is compact.

Proof. We consider the following 2 cases respectively.

Case 1: S is compact. Since T (BX) is a bounded subset of Y and S
is compact, we know that S

(
T (BX)

)
is relatively compact, i.e.

S ◦ T (BX) is relatively compact. Thus T ◦ S is compact.

Case 2: T is compact. For all bounded sequence (xn)n∈N ⊆ X, the
sequence (Txn)n∈Nis bounded in Y , then(

S(Txnk
)
)
k∈N =

(
(S ◦ T )xnk

)
k∈N

converges in Z for some subsequence (xnk
)k∈N. Thus S ◦ T is

compact.

Corollary 11.10. Therefore, C(X) is a two-sided ideal of the ring
B(X).

Here is an example of compact operator.

Example 36. Consider the infinite dimensional matrix T = (ai,j)i,j∈N
with elements such that

∑
i,j≥1|ai,j |

2
<∞. The operator

T : ℓ2 → ℓ2, x 7→ Tx :=
( ∞∑
j=1

an,jxj

)
n∈N

is compact.

Proof. We prove that T is a limit of a sequence of compact operators
sequence, and T is bounded then Proposition 11.5 can be applied.

First, T is bounded: from Hölder’s inequality, we get

∀n ∈ N : |Txn| =

∣∣∣∣∣∣
∞∑
j=1

an,jxj

∣∣∣∣∣∣ ≤ ∥x∥2
( ∞∑
j=1

|an,j |2
)1/2

,

and hence

∥Tx∥22 ≤ ∥x∥
2
2

( ∞∑
i=1

∞∑
j=1

|ai,j |2
)
.

Page 122 of 198



11.2 Lecture 11-2 11 WEEK 11

Above all

∥T∥ ≤
( ∞∑
i=1

∞∑
j=1

|ai,j |2
)1/2

. (24)

Secondly, let (Tn)n∈N be defined as follows

∀n ∈ N, Tn : ℓ2 → ℓ2, x 7→
( n∑
j=1

a1,jxj , . . . ,

n∑
j=1

an,jxj , 0, . . .
)
.

Then dim(ImTn) ≤ n and Tn is bounded (since ∥Tn∥ ≤ ∥T∥). Hence

(Tn)n∈N ⊆ Fr(ℓ2) ↪→ C(ℓ2).

Let suitable elements in (24) be 0 and we get

∥T − Tn∥ ≤
( ∞∑
i=n+1

∞∑
j=n+1

|ai,j |2
)1/2

=
( ∑
i,j≥1

|ai,j |2 −
∑

1≤i,j≤n

|ai,j |2
)1/2

→ 0(n→∞).

Thus T = limn Tn and hence T ∈ C(ℓ2).

For compact operators, relation between convergence modes is dif-
ferent.

Proposition 11.11. Suppose X,Y are 2 linear normed spaces and
T ∈ C(X,Y ). Then for all X ⊇ (xn)n∈N ⇀ x, we have (Txn)n∈N → Tx.

Remark 11.8. In general: for T ∈ B(X,Y ), we have (Txn)n∈N ⇀ Tx.

Proof of Remark 11.8. For an arbitrary f ∈ Y ∗, we have T ∗f =
f ◦ T ∈ X∗. By definition of weak convergence:

lim
n
T ∗f(xn) = lim

n
T ∗f(x),

i.e.
lim
n
f(Txn) = f(Tx).

Since f ∈ Y ∗ is arbitrary, we proved (Txn)n∈N ⇀ Tx.

Examples 37 shows that there is an operator T and a sequence
(xn)n∈N such that (xn)n∈N ⇀ x and (Txn)n∈N ̸→ Tx, where T is a
bounded operator. Thus, compact operators are special.
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Example 37. Consider X = c0 and (en)n∈N ⊆ c0, where en is the
sequence whose all elements are 0 expect for the n-th element being 1.
Then consider idc0 : c0 → c0, we have (en)n∈N ⇀ 0 but (en)n∈N ̸→ 0.
See Example 29.

Proof of Proposition 11.11. Suppose (Txn)n∈N ̸→ Tx, then there
is some ε0 > 0 and a subsequence (yk)k∈N = (xnk

)k∈N such that
∥Tyk − Tx∥ > ε0 for all k ∈ N. Weak convergence ensures that
(xn)n∈N is weakly bounded and hence bounded, see Exercise 11.1.
Therefore, (yk)k∈N is bounded and has a subsequence (zm)m∈N such
that (Tzm)m∈N converges to y ∈ Y .

Claim. We have y = Tx.

The claim follows from Corollary 9.6 and Remark 11.8. Therefore,
there is some N (depending on ε0) such that for all m > N , we have
∥Tzm − y∥ < ε0, contradiction with ∥Tyk − Tx∥ > ε0 for all k ∈ N.

There is a important theorem about compact operators and conju-
gate operators.

Theorem 11.12 (Schauder). Let X,Y be 2 given linear normed spaces
and T ∈ C(X,Y ). Then T ∗ ∈ C(Y ∗, X∗).

Remark 11.9. Furthermore, if both of X, Y are complete, then T ∗ ∈
C(Y ∗, X∗) implies T ∈ C(X,Y ) (whose proof can be found in https:
//arxiv.org/pdf/1010.1298v4.pdf).

Proof. Let X,Y be 2 given linear normed spaces and T ∈ C(X,Y ).
Now we prove T ∗ ∈ C(Y ∗, X∗). We want to prove that T ∗(BY ∗) ⊆ X∗

is relatively compact, i.e. it is totally bounded (since X∗ is complete).
Since T is compact, we have T (BX) is relatively compact and hence
totally bounded, see Corollary 6.4. Given arbitrary ε > 0, there is some
n ∈ N and {xj ∈ X : j ∈ [n]} such that

T (BX) =

n⋃
j=1

BY (yj , ε),

where yj := Txj for all j ∈ [n]. Define

S : Y ∗ −→ Kn,
f 7−→

(
f(y1), f(y2), . . . , f(yn)

)
.

Now S is bounded (suppose Kn is equipped with 1-norm) and compact
(since it is of finite-rank), then S(BY ∗) is relatively compact, i.e. totally
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bounded. Let N := {fk : k ∈ [m]} ⊆ BY ∗ be a finite set such that S(N)
is an ε-net. For all f ∈ BY ∗ :

∃k ∈ [m] : ∥S(f)− S(fk)∥ < ε. (25)

And for all x ∈ BX :

∃j ∈ [n] : ∥Tx− yj∥ < ε. (26)

Now for all x ∈ BX and f ∈ BY ∗ , from (25) and(26), we have

|(T ∗f − T ∗fk)(x)|
= |f(Tx)− fk(Tx)|
≤ |f(Tx)− f(Txj)|+ |f(Txj)− fk(Txj)|+ |fk(Txj)− fk(Tx)|
≤ ∥f∥∥Tx− Txj∥+ ∥S(f)− S(fk)∥+ ∥fk∥∥Tx− Txj∥
≤ 1 · ε+ ε+ 1 · ε
= 3ε,

where the red part is just (25) and(26). Since x ∈ BX is arbitrary, we
have

∥T ∗f − T ∗fk∥ = sup
∥x∥=1

|(T ∗f − T ∗fk)(x)| ≤ 3ε < 4ε.

Therefore, the set T ∗(BY ∗) has a finite 4ε-net for all ε > 0, as we
wanted.

Here is a result for finite-rank operators, similar to Proposition 11.9.

Proposition 11.13. Let 3 linear normed spaces X,Y, Z and bounded
linear operators T : X → Y, S : Y → Z be given. Then S ◦ T is finite-
rank whenever one of S, T is of finite rank.

Proof. It’s easy.

Corollary 11.14. Fr(X) is a two-sided ideal of the ring B(X).
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12 Week 12

12.1 Lecture 12-1
This lecture was given by Lingxuan Wu.

12.1.1 Inner Product and Inner Product Space

Definition (Semi-inner Product). Let X be a vector space over the
field K. A map u : X ×X → K is said to be a semi-inner product,
if ∀x, y, z ∈ X and ∀α, β ∈ K, the following properties are satisfied:

1. linearity: u(αx+ βy) = αu(x, y) + βu(x, z);

2. semi-positive definite: u(x, x) ≥ 0;

3. conjugate-symmetry: u(x, y) = ¯u(y, x).

Definition (Inner Product). An inner product is a semi-inner product
that is positive definite. In other words: u is an inner product if u is a
semi-inner product and u(x, x) = 0 =⇒ x = 0.

Remark 12.1. Let u be a semi-inner product on X.

1. The operator u is conjugate-linear (or anti-linear) for the second
entry. This follows from linearity and conjugate-symmetry.

2. If one of x, y = 0, then u(x, y) = 0.

Definition. A vector space with an inner product is called an inner
product space.

Notation. Suppose there is an inner product u : X × X → K, then
u(x, y) is also denoted by ⟨x, y⟩, (x, y), (x | y) or ⟨x | y⟩. The last
2 symbols are usually used in Quantum Mechanics, also known as
Dirac notation. And I would like to use ⟨x, y⟩.

Here are some examples of inner product spaces.

Example 38. The space of square-summable sequence ℓ2 is an inner
product space, whose inner product is

⟨ , ⟩ : ℓ2 × ℓ2 → K, (x, y) 7→
∑
n≥1

xnȳn. (27)

Hölder’s inequality implies that (27) is well-defined.
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Example 39. Let (Ω,Σ, µ) be a measure space. Then the space of
square-integrable functions L2(Ω,Σ, µ) (denoted by L2 for short) is an
inner product space, whose inner product is

⟨ , ⟩ : L2 × L2 → K, (x, y) 7→
∫
Ω

fḡ dµ.

Hölder’s inequality implies that ⟨ , ⟩ is well-defined. Example 38 is a
special case of this example.

Remark 12.2. This is a classical Hilbert space in Quantum Mechanics,
whose elements are wave functions.

Theorem 12.1 (Cauchy-Schwarz Inequality). Let X be an inner prod-
uct space. For all x, y ∈ X, we have

|⟨x, y⟩|2 ≤ ⟨x, x⟩ ⟨y, y⟩ .

Proof. Let α ∈ K be an arbitrary element. Then the

Remark 12.3. The Cauchy-Schwartz inequality comes to be a equality
if and only if x, y are linearly dependent.

Proof.

Cauchy-Schwarz inequality implies that an inner product space is a
normed space:

Corollary 12.2. An inner product ⟨ , ⟩ on a vectors space X induces
a norm on X as follows:

∥ ∥ : X → R, x 7→
√
⟨x, x⟩.

Proof. Just verify the axioms:

•

•

Corollary 12.3. The inner product of an inner product space is a
continuous function on (X×X, ∥ ∥1). Here the space X×X is equipped
with only product topology.

Proof. Since X is first countable, we know X ×X is first countable.
Then we prove that ⟨ , ⟩ keeps limit of sequences. Let x, y ∈ X be
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given and (xn)n∈N → x, (yn)n∈N → y. Then Cauchy-Schwarz inequality
implies

|⟨xn, yn⟩ − ⟨x, y⟩| ≤ |⟨xn, yn⟩ − ⟨xn, y⟩|+ |⟨xn, y⟩ − ⟨x, y⟩|
= |⟨xn, yn − y⟩|+ |⟨xn − x, y⟩|
≤ ∥xn∥∥yn − y∥+ ∥xn − x∥∥y∥
≤ sup

j∈N
∥xj∥∥yn − y∥+ ∥xn − x∥∥y∥

→ 0(n→∞).

Since (xn)n∈N converges inX implies that (xn)n∈N is bounded inX.

Inner product spaces have some interesting properties:

Theorem 12.4 (Polar Identity). Let X be an inner product space over
K and x, y ∈ X are arbitrary elements.

• If K = R:

⟨x, y⟩ = ⟨x+ y, x+ y⟩ − ⟨x, x⟩ − ⟨y, y⟩
4

.

• If K = C:

⟨x, y⟩ =
3∑
k=0

ik

4

〈
x+ iky, x+ iky

〉
.

Remark 12.4. Polar identity is important, since it rewrites the inner
product of 2 elements as sum of inner product of same elements.

Exercise 12.1. Prove Theorem 12.4.

Theorem 12.5 (Parallelogram Law). Let X be an inner product space
over K. For all x, y ∈ X, we have

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2). (28)

Proof. Write the norm in the form of inner product and apply linearity.

Remark 12.5. This theorem has geometric meaning as follows:

In fact, a norm of a linear normed space is induced by an inner
product if and only if it satisfies (28).

Theorem 12.6. Let X be a linear normed space over K whose norm
satisfies (28), then there is an inner product ⟨ , ⟩ on X such that ∥ ∥
is induced by ⟨ , ⟩.

Proof.
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12.1.2 Hilbert Space

Definition (Hilbert Space). An inner product space H is said to be
a Hilbert space, if H is complete with respect to the norm induced by
the inner product.

12.2 Lecture 12-2
12.2.1 Orthogonality

In this lecture, we assume that H is a Hilbert space and H is an inner
product space.

Definition. Let x, y ∈ H. We say x is orthogonal to y, denoted by
x ⊥ y, if ⟨x, y⟩ = 0.

Definition. Let A,B ⊆ H. We say A is orthogonal to B, denoted
by A ⊥ B, if ⟨x, y⟩ = 0 holds for all x ∈ A, y ∈ B. For the case that
A = {x} is a singleton, we write x ⊥ B instead of A ⊥ B.

Remark 12.6. We have A ⊥ ∅ for all A ⊆ H as a “vacuous truth”.

Definition. A subset E ⊆ H is said to be an orthogonal set, if for all
x ∈ E , we have x ⊥ E \ {x}. A subset E is said to be an orthonormal
set, if it’s an orthogonal set and for all x ∈ E , we have ∥x∥ = 1, i.e.
⟨x, x⟩ = 1.

Example 40. Consider H = K2. The set {e1 = (1, 0), e2 = (0, 1)} is
an orthonormal set.

Example 41. Consider H = ℓ2 over the field K. The set {en : n ∈ N}
is an orthonormal set.

As a generalization of the classical Pythagoras Theorem on R2, we
have

Theorem 12.7 (Pythagoras). Let E ⊆ H be an orthogonal set. Then
for all xj ∈ E and kj ∈ K, where j ∈ [n], we have∥∥∥∥∥∥

n∑
j=1

kjxj

∥∥∥∥∥∥
2

=

n∑
j=1

|kj |2∥xj∥2. (29)

Proof. Prove by mathematical induction. For n = 1, it’s trivial. For
n = 2, we have . Then suppose (29) holds for n, now we prove (29) is
true for n+ 1: ∥∥∥∥∥∥

n+1∑
j=1

kjxj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
j=1

kjxj + kn+1xn+1

∥∥∥∥∥∥
2

,
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and xn+1 is orthogonal to
∑n
j=1 kjxj , thus by the case n = 2 and

assumption about the case for n:∥∥∥∥∥∥
n+1∑
j=1

kjxj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
j=1

kjxj

∥∥∥∥∥∥
2

+ ∥kn+1xn+1∥2 =

n+1∑
j=1

∥kjxj∥.

Theorem 12.8 (Bessel’s Inequality). Let {en : n ∈ N} be an orthonor-
mal set. Then for all h ∈ H:∑

n≥1

|⟨h, en⟩|2 ≤ ∥h∥2.

Proof. For all n ∈ N, consider the element

hn := h−
n∑
j=1

⟨h, ej⟩ ej .

Then for all k ∈ [n] : hn ⊥ ek, since

⟨hn, ek⟩ = ⟨h, ek⟩ −
n∑
j=1

⟨h, ej⟩ ⟨ej , ek⟩ = 0.

Apply Theorem 29 and we get that:

∥h∥2 =

∥∥∥∥∥∥hn +

n∑
j=1

⟨h, ej⟩ ej

∥∥∥∥∥∥
2

= ∥hn∥2 +
n∑
j=1

|⟨h, ej⟩|2 ≥
n∑
j=1

|⟨h, ej⟩|2,

holds for all n ∈ N. Pass n→∞ and we’re done.

We can generalize this theorem to the case where {en : n ∈ N}
is replaced by an orthonormal set {eα : α ∈ I} that doesn’t need to
be countable. For this case, the sum

∑
n≥1 should be replaced by∑

α∈I but it’s still meaningful/convergent (and in fact, the sum is still
countable sum, see the following Corollary), whose limit can be defined
by net, filter or integration with respect to counting measure.

Corollary 12.9. Let {eα : α ∈ I} be an orthonormal set in H. Then
for all h ∈ H, we have ∑

α∈I
|⟨h, eα⟩|2 ≤ ∥h∥2

and card E ≤ cardN, where E := {α ∈ I : ⟨h, eα⟩ ≠ 0}.

Page 130 of 198



12.2 Lecture 12-2 12 WEEK 12

Proof. Consider En := {α ∈ I : |⟨h, eα⟩| > 1/n}. Then E =
⋃
n≥1En.

It suffices to prove that for all n ∈ N, the set En is at most countable. In
fact, En is a finite set for all n ∈ N. To see this, let an arbitrary n ∈ N
be given. Then apply the same argument in the proof of Theorem 29:
for all α1, . . . , αp ∈ En:

p

n2
<

p∑
J=1

〈
h, eαp

〉
≤ ∥h∥2,

thus p ≤ n2∥h∥2. Therefore, we can pick at most
⌊
n2∥h∥2

⌋
elements

in En. Thus En is finite.

Theorem 12.10 (Gram-Schmidt). Let {hn : n ∈ N} be a linearly in-
dependent subset of H. Then there is an orthonormal set {en : n ∈ N}
such that for all n ∈ N:

span{hj : j ∈ [n]} = span{ej : j ∈ [n]}.

Proof. Prove by mathematical induction.
For n = 1, the linear independence implies that h1 ̸= 0, thus define

e1 := h1/∥h1∥ and we’re done. Suppose the proposition is true for n,
i.e. there is already an orthonormal set {ej : j ∈ [n]} such that

span{hj : j ∈ [n]} = span{ej : j ∈ [n]}.

Then we define a vector

ên+1 := hn+1 −
n∑
j=1

⟨hn+1, ej⟩ ej ,

which is orthogonal to {ej : j ∈ [n]}. Moreover, we will prove ên+1 ̸= 0
and hence we can define en+1 := ên+1/

∥∥ên+1

∥∥. If ên+1 = 0, then

hn+1 =

n∑
j=1

⟨hn+1, ej⟩ ej ,

which implies hn+1 ∈ span{ej : j ∈ [n]}, i.e. hn+1 ∈ span{hj : j ∈
[n]} by assumption. Contradiction with {hn : n ∈ N} being a linearly
independent. Thus we can define en+1 := ên+1/

∥∥ên+1

∥∥ and {ej : j ∈
[n+ 1]} is an orthonormal set in H.

Finally, we prove that

span{hj : j ∈ [n+ 1]} = span{ej : j ∈ [n+ 1]}. (30)
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Since

∀k ∈ [n] : ek ∈ span{hj : j ∈ [n]} ⊆ span{hj : j ∈ [n+ 1]},

and hence

en+1 =
hn+1 −

∑n
j=1 ⟨hn+1, ej⟩ ej∥∥ên+1

∥∥ ∈ span{hj : j ∈ [n+ 1]}.

Therefore, we proved ⊇ part of (30). The ⊆ part follows from

hn+1 =
∥∥ên+1

∥∥en+1 +

n∑
j=1

⟨hn+1, ej⟩ ej

and the assumption.

Theorem 12.11. Let {en : n ∈ N} be an orthonormal set in H and
h ∈ H be an arbitrary fixed element. Then the following statements
are equivalent.

1. the space span{en : n ∈ N} contains h;

2. we have the representation (called the Fourier expansion of h):
h =

∑
n≥1 ⟨h, en⟩ en;

3. Parseval’s Identity holds: ∥h∥2 =
∑
n≥1|⟨h, en⟩|

2.

Proof. We prove in the following order:

1 ====⇒ 3 ====⇒ 2 ====⇒ 1.

1 =⇒ 3: from Theorem 12.8, we have∑
n≥1

|⟨h, en⟩|2 ≤ ∥h∥2.

Suppose the other inequality is not true, i.e. ∃a > 0 such that

∥h∥2 −
∑
n≥1

|⟨h, en⟩|2 = a2 > 0.

Since h ∈ span{en : n ∈ N}, for the fixed a > 0, there is some numbers
{αj : j ∈ [N ]} such that ∥∥∥∥∥∥h−

N∑
j=1

αjej

∥∥∥∥∥∥ < a.
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Then apply the first 2 equivalent conditions of Theorem 13.11 (notice
that

∑N
j=1 ⟨h, ej⟩ ej is the projection on span{ej : j ∈ [N ]}) and we get

a2 >

∥∥∥∥∥∥h−
N∑
j=1

αjej

∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥h−
N∑
j=1

⟨h, ej⟩ ej

∥∥∥∥∥∥
2

.

Clearly, h is orthogonal to
∑N
j=1 ⟨h, ej⟩ ej and we can apply Theo-

rem 29: ∥∥∥∥∥∥h−
N∑
j=1

⟨h, ej⟩ ej

∥∥∥∥∥∥
2

= ∥h∥2 −
N∑
j=1

|⟨h, ej⟩|2.

Thus we have

a2 > ∥h∥2 −
N∑
j=1

|⟨h, ej⟩|2 ≥ ∥h∥2 −
∞∑
n=1

|⟨h, en⟩|2 = a2,

which means a2 > a2, contradiction. Therefore, it is impossible that
∥h∥2 >

∑
n≥1|⟨h, en⟩|

2.
3 =⇒ 2: for all n ∈ N, apply Theorem 29 to h −

∑n
j=1 ⟨h, ej⟩ ej

and h, we have∥∥∥∥∥∥h−
n∑
j=1

⟨h, ej⟩ ej

∥∥∥∥∥∥
2

= ∥h∥2 −
n∑
j=1

|⟨h, ej⟩| → 0(n→∞).

Therefore,

h =

∞∑
n=1

⟨h, en⟩ en.

2 =⇒ 1: the sequence (hn)n∈N, where hn :=
∑n
j=1 ⟨h, ej⟩ ej con-

verges to h and (hn)n∈N ⊆ span{en : n ∈ N}.

Further Topics: Von Neumann Algebra

LetM ↪→ B(H) be a closed subspace. We can analysis the subspace as
we studied the subspace L∞ ↪→ L0, where L0 is the space of all measur-
able functions. They have clear different properties: commutativity.
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13 Week 13

13.1 Lecture 13-1
This lecture was given by Ruirui Chen.

We assume that H is an inner product space and H is a Hilbert
space (over K) in this lecture.

Recall

We have studied

1. Two elements x, y ∈ H is said to be orthogonal, if and only if
⟨x, y⟩ = 0. In other words, x ⊥ y ⇐⇒ ⟨x, y⟩ = 0.

2. An element and a set M ⊆ H is said to be orthogonal, if and
only if ∀M ∈ M ⟨x, y⟩ = 0. In other words, x ⊥ y ⇐⇒ (∀y ∈
M ⟨x, y⟩ = 0).

And we define

Definition. The orthogonal component of M ⊆ H is M⊥ := {x ∈
H : x ⊥M}.

The following proposition follows from definition.

Proposition 13.1. We have

1. If M = H, then M⊥ = {0};

2. For all M ⊆ H: M ∩M⊥ = ∅;

3. The orthogonal component of M ⊆ H is naturally a closed sub-
space of H.

Proof.

1. If M = H, take an arbitrary element y ∈M⊥, then for all x ∈ H,
there is a sequence M ⊇ (xn)n∈N → x by the density. Since ⟨ , ⟩
is continuous:

⟨y, x⟩ = lim
n→∞

⟨y, xn⟩ = lim
n

0 = 0.

Thus, y ⊥ x for all x ∈ H, i.e. y ⊥ H. Thus y ⊥ y =⇒ y = 0.

2. For all M ⊆ H: let x ∈M ∩M⊥, then

(M ∋)x ⊥ x(∈M⊥),

i.e. ⟨x, x⟩ = 0 =⇒ x = 0.

Page 134 of 198



13.1 Lecture 13-1 13 WEEK 13

3. We have
M⊥ =

⋂
y∈M
{x ∈ H : ⟨x, y⟩ = 0}.

It suffices to show that ∀y ∈M , the set

{y}⊥ = {x ∈ H : ⟨x, y⟩ = 0}

is a closed subspace of H. That’s trivial since it’s just the kernel
of fy : H → K, x 7→ ⟨x, y⟩.

13.1.1 Orthonormal Basis

Theorem 13.2 (Riesz–Frèchet). Let H and an orthonormal subset
E ⊆ H be given. Then for all α ∈ ℓ2, there is a unique element
x ∈ spanE such that

x =
∑
n≥1

αnen.

Proof. Define a sequence (xn)n∈N by xn :=
∑n
j=1 αjej , then (xn)n∈N

lies in E. Theorem 29 implies that ∀m ≥ n:

∥xm − xn∥2 =

m∑
j=n

|αj |2 → 0(m,n→∞).

Therefore, the sequence (xn)n∈N is a Cauchy sequence. Since H is
complete, we know ∃!x ∈ H such that x = limn xn.

Remark 13.1. Furthermore, the sequence α is determined by the limit
x since αn = ⟨x, en⟩.

Definition. Let H and an orthonormal subset E ⊆ H be given. For
all x ∈ H, we define the set Ex by

Ex := {y ∈ H : ⟨x, y⟩ ≠ 0}.

Definition. Let H and an orthonormal subset E ⊆ H be given. If
spanE = H, then E is called an orthonormal basis of HH.

Question 13.1. Does othonormal basis exist? If so, is it unique?

Theorem 13.3. Let H and an orthonormal subset E ⊆ H be given.
The following statements are equivalent.

1. spanE = H;

2. ∀x ∈ H : x =
∑
e∈Ex

⟨x, e⟩ e;
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3. ∀x ∈ H : x =
∑
e∈Ex

⟨x, e⟩ e;

4. ∀x, y ∈ H : ⟨x, y⟩ =
∑
e∈Ex∩Ey

⟨x, e⟩ ⟨y, e⟩;

5. E⊥ = {0}.

Proof. From Theorem 12.11, we know 1 ⇐⇒ 2 ⇐⇒ 3. And we will
prove

2 ====⇒ 4 ====⇒ 5 ====⇒ 1.

2 =⇒ 4: in the limit sense, we have

x =
∑
e∈Ex

⟨x, e⟩ e.

For all y ∈ H, the map ⟨ , y⟩ is a continuous functional and hence

⟨x, y⟩ =
∑
e∈Ex

⟨x, e⟩ ⟨e, y⟩ .

4 =⇒ 5: given an arbitrary element x ∈ E⊥. Then

⟨x, x⟩ =
∑
e∈Ex

|⟨x, e⟩|2,

and the sum must be 0 anyway. Therefore, ⟨x, x⟩ = 0 =⇒ x = 0.
5 =⇒ 1: if there is an element x ∈ H \ spanE, from Corollary 12.9:

∥x∥2 ≥
∑
e∈Ex

|⟨x, e⟩|2. From Theorem 13.2, we have

∃!y ∈ spanE such that y =
∑
e∈Ex

⟨x, e⟩ e.

Let z := y − x, then z ̸= 0. For all e ∈ E \ Ex: ⟨x, e⟩ = 0, ⟨y, e⟩ = 0.
For all e ∈ Ex: ⟨x, e⟩ = ⟨y, e⟩. Therefore, for all e ∈ E: ⟨z, e⟩ =
⟨y, e⟩ − ⟨x, e⟩ = 0, i.e. z ⊥ E. Above all E⊥ ∋ z, E⊥ ̸= {0}.

And we answer the existence part of Question 13.1.

Theorem 13.4. Let H be given. Then it must have an orthonormal
basis.

Proof. Let
F := {E ∈ P(H) : E is orthonormal}.

Then (F ,⊆) is an partially-ordered set. For all totally-ordered subset
A ⊆ F , we prove that A has an upper bound. It suffices to show that⋃
A lies in F , i.e.

⋃
A is orthonormal.For all ei, ej ∈

⋃
A, there is

Page 136 of 198



13.1 Lecture 13-1 13 WEEK 13

some Gi, Gj ∈ A such that ei ∈ Gi, ej ∈ Gj . WLOG, suppose Gi ⊆ Gj
then ei, ej ∈ Gj , which means ⟨ei, ej⟩ = δji . Thus

⋃
A ∈ F is an upper

bound of A. Zorn’s lemma ensures that there is a maximal element in
F , and we denote it by M .

Claim. We have spanM = H. In other words, M is an orthonormal
basis.

Clearly spanM is a closed subspace of H, and Theorem 13.3 ensures
that spanM = H is equivalent to M⊥ = {0}. If we have M⊥ ̸= {0}, i.e.
there is an element y ∈ M⊥ such that ⟨y, y⟩ = 0. Then M ∪ {y} ∈ F
is strictly larger than M , which is a contradiction.

Example 42. The space ℓ2 has the familiar completely orthonormal
basis (en)n∈N.

Example 43. The space L2[−π, π] (denoted by L2 for short), with the
inner product

⟨ , ⟩ : L2 × L2 → K, (f, g) 7→ 1

2π

∫
[−π,π]

fḡ dm.

has the basis

E = (en)n∈Z, where we define en : [−π, π]→ C, x 7→ einx.

Proof. We need some lemmas to finish this proof. Let C[−π, π] de-
notes the space of all continuous functions on [−π, π], and C2π be the
space as defined in Week 8 Lecture 1 (but we restrict them on [−π, π]
in this example). Furthermore, let T [−π, π] := spanE be the space of
all trigonometric functions.

Lemma 13.5. The space C[−π, π] is dense in L2.

Proof of Lemma 13.5. It suffices to prove the case that simple func-
tions can be approximated, which can be ensured by the outer regular-
ity of Lebesgue measurable sets. See [1, Theorem 3.48].

Lemma 13.6. The space C2π is dense in L2.

Proof of Lemma 13.6. It suffices to show that C2π is dense in
C[−π, π]. Let an arbitrary element g ∈ C[−π, π] be given. For all
δ > 0, consider

gδ : [−π, π] −→ C,
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defined by

x 7−→


g(x), x ∈ [−π, π − δ];
hδ(x), x ∈ [π − δ, π];
g(−π), x = π;

where hδ is the affine map is selected to make that gδ is continuous.
Then Lemma 13.7 ensures that limδ→0∥gδ − g∥2 = 0 (remember, Dom-
inated Convergence Theorem ensures that convergence in norm, not
only changing the order of lim and

∫
).

Lemma 13.7. Let (X,A, µ) be a measure space and Ω be a metric
space. Fix a point t0 ∈ Ω. Suppose there is a function

f : X × Ω→ C, x 7→ f(x, t)

satisfying the following conditions:

1. for all x ∈ X, the function t 7→ f(x, t) is measurable;

2. for almost every x ∈ X, the map t 7→ f(x, t) is continuous at
t0 (i.e. there is a null set N such that for all x ∈ N c, the map
t 7→ f(x, t) is continuous);

3. there is a function h ∈ L1(X,A, µ) such that for all t ∈ Ω, we
have

|f(x, t)| ≤ h(x)

for almost every x ∈ X (i.e. for each t there is a null set Nt such
that ∀x ∈ N c

t , we have |f(x, t)| ≤ h(x)).

Then the function

F : Ω→ C, t 7→ F (t) =

∫
X

f(x, t) dµ(x)

is well-defined and continuous at t0.

Therefore, we proved Lemma 13.6.

Proof of Lemma 13.7. For all t ∈ Ω, we have |f(x, t)| ≤ h(x) for
almost every x ∈ X, and hence f( , t) ∈ L1(X,A, µ). Then f is well-
defined. To see that F is continuous at t0, let an arbitrary sequence
(tn)n∈N that converges to t0 be given, then we want to see

lim
n

∫
X

f(x, tn) dµ(x) =

∫
X

f(x, t) dµ(x).
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This can be proved by Dominated Convergence Theorem. Just let h
be the dominating function and

N(tn)n∈N :=
⋃
n≥1

Ntn

is a null set such that ∀n ∈ N, we have fn := f( , tn) is dominated by
h for all x /∈ N(tn)n∈N .

Theorem 13.8 (Weierstrass). The space T [−π, π] is dense in C2π,
with respect to the infinity norm ∥ ∥∞.

Theorem 13.8 implies that T [−π, π] is dense in C2π, with respect to
the 2-norm ∥ ∥2. Proof of Theorem 13.8 can be found in many books,
such as [2, Chapter 2, Corollary 5.4].

Above all, we proved that spanE = T [−π, π] is dense in L2[−π, π].

Remark 13.2. The space L2[−π, π] has interesting properties.

1. for all f ∈ L2[−π, π], we have

f =
∑
k∈Z
⟨f, ek⟩ ek,

where the = means the limit with respect to L2-norm (and hence
the Fourier series convergent to f in measure, which ensures that
there is a subsequence convergent to f almost everywhere).

2. in fact, in 1966, Lennart Carleson proved that: for f ∈ L2[−π, π],
we have

f(x) =
∑
k∈Z
⟨f, ek⟩ ek(x)

for almost every x ∈ [−π, π]. Here is a relevant post.

3. abovel all, L2[−π, π] has the orthonormal basis (ek)k∈Z. For the
space L2[−1, 1], it has an orthonormal basis: Legendre Polyno-
mial, defined as

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n ,

for all n ∈ Z≥0. This also means that an orthonormal basis in a
Hilbert space may be not unique.

Theorem 13.9. Let H and an orthonormal basis E ⊆ H be given.
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1. The space H is separable if and only if H has an orthonormal
basis;

2. If cardE = cardN, then H ∼= ℓ2;

3. If cardE = n ∈ N, then H ∼= Kn.

Proof. 1: if H is separable, let (xn)n∈N ⊆ H be a dense subset. Pick a
maximal linearly independent subset of (xn)n∈N, denoted by (yn)n∈N.
Apply Theorem 12.10 to (yn)n∈N and we get an orthonormal sequence
(en)n∈N. It’s an orthonormal basis, since

H = span(xn)n∈N = span(yn)n∈N = span(en)n∈N.

If H has an orthonormal basis (en)n∈N, i.e.

H = span(en)n∈N.

Consider the set
An := spanQ{ej : j ∈ [n]}

for all n ∈ N, where spanQ means the vector space generated over the
field Q. Then An is linearly isomorphic to a n-dim vector space over
Q, thus

cardAn = cardQn = cardQ,

since cardQ = cardN implies that cardQn = cardNn = cardN, which
can be proved by induction. Now

spanQ(en)n∈N =
⋃
n∈N

An

is a countable (since it is the countable union of countable sets) subset
of H, and it is dense in H. For all x ∈ H, Theorem 13.2 ensures
that there is some α ∈ ℓ2 such that x =

∑
n≥1 αnen. Then x can be

approximated by elements of span{ej : k ∈ [N ]} for big N , and hence
can be approximated by elements of spanQ{ej : k ∈ [N ]}. Above all,
we proved that H = spanQ(en)n∈N.

2: let E := (en)n∈N be an orthonormal basis. Consider

Φ: H → ℓ2, x 7→
(
⟨x, en⟩

)
n∈N.

Then H is an isometry. Linearity follows from the linearity of the inner
product on H. It is surjective as Theorem 13.2. It is injective since
Φ(x) = 0 ⇐⇒ x ∈ E⊥ = {0}, as Theorem 13.3.

3: similarly.
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13.2 Lecture 13-2
This lecture was given by Zhiyao Chen.

We assume that H is an inner product space and H is a Hilbert
space (over K) in this lecture.

13.2.1 Projection

Definition. Let E ↪→ H be a subspace. For all x ∈ H, if there are two
elements x0 ∈ E, x1 ∈ E⊥ such that x = x0+x1, then we say: x0 is the
projection of x onto E. The projection of x onto E is usually denoted
by xE .

There are 2 natural questions:

Question 13.2. Does the projection of x onto E exist? Is it unique?

Question 13.3. Are there more properties of xE?

We answer Question 13.2 in this lecture, and some of Question 13.3.

Theorem 13.10. Let E ↪→ H, x ∈ H and x0 ∈ E be given. The
following statements are equivalent:

1. the projection of x onto E is just x0;

2. the distance as a infimum is reached at x0: d(x,E) = ∥x− x0∥;

3. for all z ∈ E, the function

f : R→ R, λ 7→ ∥x− x0 − λz∥2

reaches the minimum at 0.

Proof. 1 =⇒ 2: suppose x0 = xE . Then x − x0 ⊥ E. On the one
hand: d(x, x0) ≥ d(x,E). On the other hand: for all y ∈ E:

∥x− y∥2 =

∥∥∥∥∥∥(x− x0) + (x0 + y)︸ ︷︷ ︸
∈E

∥∥∥∥∥∥
2

= ∥x− x0∥2 + ∥x0 − y∥2

≥ ∥x− x0∥2.

Therefore ∥x− y∥ ≥ ∥x− x0∥. Since y is arbitrary, we have d(x,E) ≥
∥x− x0∥.
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2 =⇒ 3: since for all z ∈ E, we have x0 − λz ∈ E, for all λ ∈ R.
Then the definition of infimum implies the result.

3 =⇒ 1: let z ∈ E be given. The function f is differentiable at 0:

lim
t→0

f(t)− f(0)
t− 0

= lim
t→0

⟨x− x0 − tz, x− x0 − tz⟩ − ⟨x− x0, x− x0⟩
t

= lim
t→0

−2tRe ⟨x− x0, z⟩+ t2∥z∥2

t

= − 2Re ⟨x− x0, z⟩ .

And f reaches the minimum at 0 implies that f ′(0) = 0. In other words,
Re ⟨x− x0, z⟩ = 0. Replace z by iz and we get Im ⟨x− x0, z⟩ = 0 and
hence ⟨x− x0, z⟩ = 0 holds for all z ∈ E. Therefore, x − x0 ⊥ E and
x0 is the projection of x onto E.

Theorem 13.11 (Projection). Let E ↪→ H be a closed subspace. Then
for all x ∈ H:

∃!xE ∈ E : ∥x− xE∥ = d(x,E).

In other words, the projection of x onto E exists and is unique.

Proof. Existence: let a := d(x,E). By the definition of distance, we
can pick a sequence (yn)n∈N ⊆ E such that

∀n ∈ N : a ≤ ∥x− yn∥ < a+ 1/n. (31)

Now we prove that (yn)n∈N is a Cauchy sequence. For all m,n ∈ N,
apply Parallelogram Law:(

a+ 1/n
)2

+
(
a+ 1/m2

)
≥ ∥x− yn∥2 + ∥x− ym∥2

= 2
(
∥x− (yn + ym)/2∥2 + ∥yn − ym∥2

)
≥ 2a2 + 2∥yn − ym∥2.

Thus limm,n∥yn − ym∥ = 0. Since E ↪→ H is closed and hence com-
plete, there is limn yn = y ∈ E. Let n → ∞ in (31) and we get
∥x− y∥ = a, by the continuity of norm. Existence has been proved.

Uniqueness: if there is another ỹ ∈ E such that d(x,E) = a =
∥x− ỹ∥, then

2a2 = ∥x− ỹ∥2 + ∥x− y∥2

= 2
(
∥x− (y + ỹ)/2∥2 + ∥y − ỹ∥2

)
≥ 2a2 + 2∥y − ỹ∥2.

Thus ∥y − ỹ∥ = 0, i.e. y = ỹ.
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Remark 13.3. Another way to prove uniqueness:

a2 = ∥x− y∥2

=

∥∥∥∥∥∥∥(x− ỹ)︸ ︷︷ ︸
∈E⊥

+(ỹ − y)︸ ︷︷ ︸
∈E

∥∥∥∥∥∥∥
2

= ∥x− ỹ∥2 + ∥ỹ − y∥2

≥ a2 + ∥x− ỹ∥2.

Then y = ỹ.

In fact, we can change E to be a closed convex subset in Theo-
rem 13.11.

Exercise 13.1. Change E to be a closed convex subset in Theo-
rem 13.11 and prove the same result.

Theorem 13.12. Given H and E ↪→ H be a closed subspace, then

1. H = E ⊕ E⊥;

2. (E⊥)⊥ = E.

Proof. The projection operator ensures that for all x ∈ H, we have
x = xE +(x−xE) where xE ∈ E and x−xE ∈ E⊥, thus H = E+E⊥.
Then E ∩ E⊥ = {0} ensures that H = E ⊕ E⊥.

It is easy to verify E ⊆ (E⊥)⊥. For another direction, taking an
arbitrary x ∈ (E⊥)⊥, i.e. x ⊥ E⊥, consider the projection PE : we have
x = x1 + x2 where x1 = PEx ∈ E, x2 = x− PEx ∈ E⊥. Now we prove
x2 = 0 and hence x = x1 ∈ E. Look at the inner product:

⟨x2, x2⟩ = ⟨x, x2⟩ − ⟨x1, x2⟩ = 0− 0 = 0

because x ∈ (E⊥)⊥, X2 ∈ E⊥ ensures the first 0 and x1 ∈ E, x2 ∈ E⊥

implies the second 0, as we wanted.

Remark 13.4. More than H = E ⊕ E⊥: for H ∋ x = y + z, where
y ∈ E, z ∈ E⊥, we have ∥x∥2 = ∥y∥2 + ∥z∥2 as Theorem 29. ■

Corollary 13.13. For all E ↪→ H, we have (E⊥)⊥ = E.

Proof. Because E⊥ =
(
E
)⊥.

Consider a simple and familiar example.
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Example 44. We have R2 = E⊕E⊥, where E := {(x, y) ∈ R2 : y = 0}
and E⊥ = {(x, y) ∈ R2 : x = 0}. ■

Remark 13.5. Above all, given a Hilbert space H and a closed sub-
space E ↪→ H, we have studied:

1. the existence of projection: for all x ∈ H, ∃!xE ∈ E such that
x− xE ∈ E⊥;

2. the orthogonal decomposition H = E ⊕ E⊥;

Finally, we prove that PE ∈ B(H, E).

Proposition 13.14. Given H and a closed subspace E ↪→ H. Then
PE ∈ B(H, E).

Proof. Linearity: for arbitrary x, y ∈ H, we have

x = xE + x1, y = yE + y1

where xE = PE(x), yE = PE(y) and x1, y1 ∈ E⊥. Then

x+ y = (xE + yE) + (x1 + y1)

where xE+yE ∈ E and x1+y1 ∈ E⊥. SinceH = E⊕E⊥ is a direct sum,
we know PE(x + y) = xE + yE . Similarly we know PE(kx) = kPE(x)
for all k ∈ K.

Boundedness: from Remark 13.4, we have

∥x∥2 = ∥PEx∥2 + ∥x− PEx∥2 ≥ ∥PEx∥2,

which implies ∥PE∥ ≤ 1. And in fact, ∥PE∥ = 1 if E ̸= {0}, ∥PE∥ = 0
when E = {0}. To see this, take an arbitrary 0 ̸= x ∈ E (if possible)
and we have PE(x) = x.

For more properties of projection operator, see Lecture 14-2 .

13.2.2 Further Topics

Reference: Characterizing compact sets in Lp-spaces and its applica-
tion.

Throughout this part, X is a Borel-regular Borel metric measure
space such that every open ball with positive radius has a positive and
finite measure (definitions can be found below).

We studied compactness and relative compactness in Lecture 6-1 .
Recall: in a metric space (X, d), a subset F ⊆ X is
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• relatively compact, if and only if the closure of it, i.e. F is com-
pact;

• compact, if and only if it is closed and relatively compact.

Notation. We use the operator τa for a ∈ Rn, whose definition can
be found in Fourier series’s divergence. For convenience, let B(y, r) be
the closed ball for a metric space Y , centered at y with radius r.

Theorem (Kolmogorov-Riesz). For p ∈ [1,∞), given a subset F ⊆
Lp(Rn), where Rn is equipped with the Euclidean metric, Lebesgue
measurable sets M and Lebesgue measure m. Then F is relatively
compact, if and only if the following conditions are satisfied.

1. it is bounded, i.e. supf∈F ∥f∥p <∞;

2. the two limits hold

lim
r→0

sup
f∈F
∥τrf − f∥p = 0,

lim
R→0

sup
f∈F

∥∥f · χRn\B(0,R)

∥∥
p
= 0.

The result is generalized as following:

Definition. Let (X,M, µ, d) be a metric measure space. It is said to
be Borel, if M contains the Borel σ-algebra, the σ-algebra generated
by all open sets. It is said to be Borel-Regular, if each E ⊆ X is
contained in a Borel set B such that µ(B) = µ(E). It is said to be
doubling, if there is some λ ≥ 1 such that

µ(B(x, 2r)) ≤ λµ(B(x, r))

for all x ∈ X, r > 0. The above λ is called the doubling constant.

Theorem. Let (X, d, µ) be a doubling metric measure space and p > 1.
Suppose that

inf{µ(B(x, r)) : x ∈ X} > 0

for any r > 0. Then F ⊆ Lp := Lp(X, d, µ) is relatively compact if and
only if the following conditions are satisfied.

1. it is bounded, i.e. supf∈F ∥f∥p <∞;

2. the two limits hold

lim
r→0

sup
f∈F
∥Arf − f∥p = 0,

inf
diamE<∞

sup
f∈F

∥∥f · χX\E
∥∥
p
= 0,
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where the operator Ar is defined as following.

Definition (Average Operator). Let (X, d, µ) be a metric measure
space . For p ≥ 1, we define an operator Ar on Lp := Lp(X, d, µ)
for all r > 0. The average operator

Ar : Lp → Lp, f 7→ (Arf),

where Arf is defined by

Arf(x) :=
1

µ(B(x, r))

∫
B(x,r)

f dµ,

i.e. the average value of f with respect to the ball centered at x with
radius r.

And in 2022, Katsuhisa Koshino proved the following result in Char-
acterizing compact sets in Lp-spaces and its application .

Theorem. Let (X, d, µ) be a doubling metric measure space and p ≥ 1.
Suppose that for any x ∈ X and any r > 0,

µ(B(x, r)∆B(y, r))→ 0

as y → x. Then F ⊆ Lp := Lp(X, d, µ) is relatively compact if and
only if the following conditions are satisfied.

1. it is bounded, i.e. supf∈F ∥f∥p <∞;

2. the two limits hold

lim
r→0

sup
f∈F
∥Arf − f∥p = 0,

inf
diamE<∞

sup
f∈F

∥∥f · χX\E
∥∥
p
= 0.

And it is natural to ask, is it possible to generalize the result to
Lp(·), the variable Lebesgue space?

Reference about variable Lebesgue spaces: Variable Lebesgue Spaces.
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14 Week 14

14.1 Lecture 14-1
This Lecture was given by me.

Recall

Last Thursday, we studied “projection on Hilbert space”: let H be a
Hilbert space and E ↪→ H be a subspace of H. Then for all x ∈ H,
there is a unique PE(x) ∈ H such that x− PE(x) ⊥ E. As a corollary:
we have a direct sum decomposition:

H = E ⊕ E⊥.

Furthermore, there is a non-trivial duality:

(E⊥)⊥ = E. (32)

14.1.1 Riesz Representation Theorem

We have studied duality of linear normed spaces: dual spaces and con-
jugate operators. Hilbert spaces are special linear normed spaces; let
H be a Hilbert space (an inner product is enough, in fact), then for
all y ∈ H, there is a bounded functional on H induced by y (more
precisely, by fixing y at the second position of the inner product):

H∗ ∋ φy : H → K, x 7→ ⟨x, y⟩ .

Then φ : H → H∗, y 7→ φy is conjugate-linear and keeps norms. The
map φ depends on H (also denoted by φH for clarity), is a conjugate-
linear injection satisfying ∥ ∥H∗ ◦ φ = ∥ ∥H .

Theorem 14.1 (Riesz Representation Theorem). Let H be a Hilbert
space, then ∀f ∈ H∗ ∃!yf ∈ H such that

∀x ∈ X : f(x) = ⟨x, yf ⟩ .

Furthermore, we have ∥f∥H∗ = ∥yf∥H .

Proof. We prove the existence and uniqueness of yf for all f ∈ H∗.
Let an arbitrary functional f ∈ H∗ be given.

1. Existence: if f = 0, it suffices to take y0 = 0; suppose f ̸= 0, i.e.
N := ker f ̸= {0}. As we know, ker f is a closed subspace of H
and there is a direct sum decomposition of H:

H = N
⊕

N⊥

Page 147 of 198



14.1 Lecture 14-1 14 WEEK 14

Taking an element 0 ̸= y ∈ H⊥. Then f(y) = 0, since f(y) =
0 =⇒ y ∈ N , and at the same time N⊥ ∋ y ̸= 0, thus y /∈ N .

Claim. We have

f(x) =

〈
x,
f(y)

∥y∥2
y

〉
,∀x ∈ H.

To see this, notice that for all x ∈ H:

x− f(x)

f(y)
y ∈ N,

thus it’s perpendicular with y ∈ N⊥, i.e.〈
x− f(x)

f(y)
y, y

〉
= 0.

Simple calculations imply that

f(x) =

〈
x,
f(y)

∥y∥2
y

〉
,∀x ∈ H.

Let yf := f(y)

∥y∥2 · y and we’re done.

2. Uniqueness: suppose both of yf , ỹ satisfy that for all x ∈ H:

⟨x, yf ⟩ = f(x) = ⟨x, ỹ⟩ .

Then take x = yf − ỹ, and we see ⟨yf − ỹ, yf − ỹ⟩ = 0, which
implies yf − ỹ = 0.

Remark 14.1. Here we can’t change the “a Hilbert space” to “an in-
ner product space” in Theorem 14.1. In other words, completeness is
necessary in some sense. See Example 45. ■

Remark 14.2. This proof can be decomposed to 2 ideas:

1. Two linear functionals (not needed to be continuous) on a vector
space have the same kernel if and only if they are scalar multipli-
cation of each other.

Proof. Consider a vector space V over the field K. Suppose
f, g ∈ V ♯ has the same kernel N = ker f = ker g. If N = V ,
then f = g = 0 and we’re done. Else, if N ̸= 0, consider the
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quotient space V⧸N , which is isomorphic to K since both of f, g
are isomorphisms. Then dimV⧸N = 1, and so is L(V⧸N,K).
Consider the quotient map π : V → V⧸N and it induces f̃ , g̃ as
the following commutative diagram

V K

V⧸N

f,g

π
f̃,g̃

Then we know f̃ , g̃ ̸= 0 and the diminsion implies that there is
0 ̸= c ∈ K such that f̃ = cg̃. Now for all x ∈ V , we have

f(x) = f̃(π(x)) = cg̃(π(x)) = cg(x),

since the diagram commutes.

2. Then consider a Hilbert space H. To find a vector y such the
functional f ∈ H∗ is just φy as defined above, it suffices to find
y such that ker(φy) = ker f . What’s ker(φy)? The set of vectors
that are orthogonal to y. If ker f = {v}⊥, then the duality (32)
implies that

span{v} = (ker f)⊥.

Thus if a non-zero vector of (ker f)⊥ was found, then we were
done. ■

Example 45 (Not Complete Space). Consider the inner product space
(the space of all finitely supported sequences) cc ↪→ ℓ2, where

cc := {x = (xn)n∈N ∈ NK : xn = 0 for all but finitely many n}

and ℓ2 is equipped with the usual inner product. Then the functional

f : cc → K, x 7→
∞∑
n=1

xn/n

is bounded, with norm π/
√
6 but there is no element y ∈ cc such that

∀x ∈ cc : f(x) = ⟨x, y⟩ .

Definition (Conjugate-Isometry). LetH,K be 2 linear normed spaces.
If f : X → Y be a conjugate-linear bijection such that

∀x ∈ X : ∥f(x)∥Y = ∥x∥X ,

then f is said to be a conjugate-isometry. We write H ∼=
conj

K if

there is an conjugate isometry from H to K.
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Corollary 14.2. For a Hilbert space H, there is a conjugate-isometry:

φ : H → H∗, y 7→ φ(y) = φy,

where the map φy is defined as follows

φy : H → K, x 7→ ⟨x, y⟩ ,

for all y ∈ H.

Proof. Theorem 14.1 implies that φ is bijective. Furthermore, φ is

• conjugate-linear: let arbitrary y, z ∈ H and k, l ∈ K be given.
Then

∀x ∈ H : φky+lz(x) = ⟨x, ky + lz⟩
= k̄ ⟨x, y⟩+ l̄ ⟨x, z⟩
= k̄φy(x) + l̄φz(x)

= (k̄φy + l̄φz)(x),

and hence
φky+lz = k̄φy + l̄φz.

• isometry: it suffices to show that it keeps norms. Let y ∈ H be
an arbitrary fixed element. Then

∀x ∈ H : |φy(x)| = |⟨x, y⟩| ≤ ∥x∥ · ∥y∥,

which means ∥φy∥ ≤ ∥y∥. And φ(y) = ∥y∥2 implies that ∥φy∥ ≥
∥y∥, thus ∥φy∥ = ∥y∥.

Above all, φ is a conjugate-isometry.

Remark 14.3. The conjugate isometry given by this corollary is called
the Riesz map (with respect to H), also denoted by φH .

Example 46. Consider a measure space (Ω,Σ, µ). Then L2(Ω,Σ, µ)
is a Hilbert space (denoted by L2 for short from now on). This implies

L2
∼=

conj
L∗
2.

On the other hand, we have L2
∼=

conj
L2, since

idL2 : L2 → L2, f 7→ (f̄ : ω 7→ f(ω))

is a conjugate isometry. Then φL2 ◦ idL2
is an isometry from L2 to L∗

2.
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Question 14.1. For an inner product space X, if it’s complete, i.e. a
Hilbert space then there is a conjugate-isometry from X to X∗. Does
the reversed proposition holds? In other words, if there is an inner
product space X and there is a conjugate-isometry from X to X∗, then
X is a Hilbert space.

We will answer this later.

Proposition 14.3. Let H be a Hilbert space and φ be the bijection of
above corollary. Then the norm (as a operator norm) of H∗ is induced
by the following inner product:

⟨ , ⟩H∗ : H∗ ×H∗ → K, (φ(y), φ(x)) 7→ ⟨x, y⟩H , (33)

and H∗ is a Hilbert space.

Proof. It suffices to prove that ∥ ∥H∗ satisfies the Parallelogram Law
and apply Theorem 12.6. Consider the Theorem 12.4: for all x, y ∈ H

∥φ(y) + φ(x)∥2 + ∥φ(y)− φ(x)∥2

= ∥φ(y + x)∥2 + ∥φ(y − x)∥2 (linearity)

= ∥y + x∥2 + ∥y − x∥2 (isometry)

= 2(∥y∥2 + ∥x∥2)

= 2(∥φ(y)∥2 + ∥φ(x)∥2). (isometry)

Then Theorem 12.6 implies that ∥ ∥H∗ is induced by an inner product
⟨ , ⟩H∗ . Now we prove (33). WLOG, let K = R. Then apply the polar
identity: for all x, y ∈ H

⟨φ(y), φ(x)⟩H∗ =
∥φ(y) + φ(x)∥2 − ∥φ(y)− φ(x)∥2

4

=
∥φ(y + x)∥2 − ∥φ(y − x)∥2

4

=
∥y + x∥2 − ∥y − x∥2

4
= ⟨y, x⟩ = ⟨x, y⟩ .

Page 151 of 198



14.1 Lecture 14-1 14 WEEK 14

For the case K = C, proof is similar:

⟨φ(y), φ(x)⟩H∗ =
1

4

∑
α4=1

α∥φ(y) + αφ(x)∥2

=
1

4

∑
α4=1

α∥φ(y + αx)∥2

=
1

4

∑
α4=1

α∥y + αx∥2

=
1

4

∑
β4=1

β∥y + βx∥2

= ⟨y, x⟩
= ⟨x, y⟩ .

The space H∗ is the dual space of H and must be complete.

Theorem 14.4. Every Hilbert space is reflexive. In other words, for all
Hilbert spaceH, the canonical embedding ιH : H → H∗∗ is an isometry.
And ιH = φH

∗ ◦ φH .

Proof. Theorem 14.1 gives an conjugate-isometry φH : H → H∗. We
have proved that H∗ is a Hilbert space, thus there is an conjugate-
isometry φH

∗
from H∗ to H∗∗ =

(
H∗)∗.

Claim. The natural embedding is just the composition of 2 conjugate-
isometries: ιH = φH

∗ ◦ φH . In other words, the following diagram
commutes

H H∗∗

H∗

ιH

φH
φH∗

The theorem is proved as long as the claim is proved.

Taking arbitrary x ∈ H and H∗ ∋ f = φ(y), where y ∈ H, we have

[ιH(x)](f) = x̂(f) = f(x)= ⟨x, y⟩H ,

and [
(φH

∗
◦ φH)(x)

]
(f) =

[
φH

∗(
φH(x)

)]
(f)

=
〈
f, φH(x)

〉
H∗

=
〈
φHy , φ

H
x

〉
H∗

= ⟨x, y⟩H .
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Thus
ιH(x) = (φH

∗
◦ φH)(x)

holds for all x ∈ H. And hence ιH = φH
∗ ◦ φH .

Now we answer Question 14.1.

Answer of Question 14.1. That’s true (and this proof is almost the
same as the proof of Theorem 14.4). In other words, Riesz’s Theorem
states a property that only Hilbert spaces enjoy.

We prove that there is an conjugate-isometry from X∗ to another
Hilbert space. Let φ : X → X∗ be the conjugate-isometry, Let Y :=
X∗, and Y ∗ be the dual space of Y , then both of Y, Y ∗ are Hilbert
spaces. There is an conjugate-isometry

φY : Y → Y ∗, f 7→ φYf = ⟨ , f⟩H∗

given by Theorem 14.1. Just like what we do in the proof of Theo-
rem 14.1, we can define an inner product on Y ∗ such by

∀g, f ∈ Y :
〈
φY (g), φY (f)

〉
Y ∗ := ⟨f, g⟩Y ,

which induces the norm on Y ∗. Then consider µ := φY ◦ φ : X → Y ∗,
which is an isometry. Thus X ∼= Y ∗ and hence X is a Hilbert space.

Remark 14.4. Let H be a Hilbert space, the conjugate-isometry from
H to H∗ doesn’t need to be unique. In fact, it suffices to show that
there are some Hilbert spaces that have at least one non-trivial “auto-
isometry”. Consider the following examples:

Example 47. The Hilbert space ℓ2(Z), whose elements are all square
summable sequence from Z to K:

ℓ2(Z) := {x ∈ ZK :
∑
n∈Z
|xn|2 <∞.}

Then the k-shift operator is an “auto-isometry”:

τk : ℓ2(Z)→ ℓ2(Z), x 7→ (τkx : n 7→ xn−k).

Therefore, F := φ ◦ λk is a conjugate-isometry from ℓ2(Z) to
(
ℓ2(Z)

)∗
ℓ2(Z)

ℓ2(Z)
(
ℓ2(Z)

)∗τk
F

φ

This example can be generalized to L2(G), where G is an Abelian group
with a suitable measure. ■
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14.1.2 Application

We introduce some notions similar to inner product (just like the rela-
tion between sub-linear functional and functional).

Definition (Bilinearity, Sesquilinearity and so on). Let H,K be 2
linear normed spaces. A map ψ : H ×K → K is said to be

1. a bilinear functional, if for all x, y ∈ X, z, w ∈ Y and k, l ∈ K,
we have

ψ(kx+ ly, z) = kψ(x, z) + lψ(y, z),

ψ(x, kz + lw) = kψ(x, z) + lψ(x,w).

2. a sesquilinear functional, if for all x, y ∈ X, z, w ∈ Y and
k, l ∈ K, we have

ψ(kx+ ly, z) = kψ(x, z) + lψ(y, z),

ψ(x, kz + lw) = k̄ψ(x, z) + k̄ψ(x,w).

3. a bounded functional on H×K, if ψ is bilinear or sesquilinear
and the supermum sup∥y∥≤1

∥x∥≤1

|ψ(x, y)| is finite. Equivalently, there

is M > 0 such that

∀x ∈ X, y ∈ Y : |ψ(x, y)| ≤M∥x∥ · ∥y∥.

And denote sup∥y∥≤1
∥x∥≤1

|ψ(x, y)| by ∥ψ∥ (∥ ∥ is a norm).

Remark 14.5. Inner product is a special sesquilinear functional.

Remark 14.6. For the boundedness of ψ, we don’t need H × K to
have a norm. The boundedness is an abstract general version of Cauchy
Schwarz inequality. Here is another possible interpretation for the case
that ψ is bilinear: consider the tensor product of H and K, i.e. a pair
(X

⊗
Y, θ) satisfying the universal property of tensor product. Then

the following diagram commutes:

H ×K

H
⊗
K K

ψ
θ

Ψ

(x, y) ψ(x, y)

x⊗ y Ψ(x⊗ y)
θ

ψ

Ψ

Here H
⊗
K is a linear normed space whose norm satisfies

∀x ∈ H, y ∈ K : ∥x⊗ y∥ = ∥x∥ · ∥y∥.
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Let

BE
⊗
F ⊇ S :=

{
θ(x, y) = x⊗ y ∈ X

⊗
Y : x ∈ BE , y ∈ BF

}
,

then

sup
∥x∥≤1
∥y∥≤1

|ψ(x, y)| = sup
∥x∥≤1
∥y∥≤1

∣∣(Ψ ◦ θ)(x, y)∣∣ = sup
x⊗y∈S

|Ψ(x⊗ y)|.

And in fact, the convex hull of S is just BE⊗
F . Thus

sup
u∈S
|Ψ(u)| = sup

u∈BE
⊗

F

|Ψ(u)| = ∥Ψ∥(E⊗
F )∗ .

In other words, the norm ψ is just the norm of the bounded linear
functional Ψ. ■

Theorem 14.5 (Representation of Sesquilinear Functional). Let H,K
be 2 Hilbert spaces. Then ψ : H ×K → K is a sesquilinear functional
if and only if ∃T ∈ B(H,K) such that for all x ∈ H, y ∈ K:

ψ(x, y) = ⟨Tx, y⟩K .

Furthermore, if T exists then it’s unique, and satisfies: ∥T∥ = ∥ψ∥.

Proof. For all x ∈ H, consider the map fx : K → K, y 7→ ψ(x, y).
Then fx ∈ K∗. Riesz Representation Theorem implies that there is
a unique element, which will be denoted by Tx, such that for all x ∈
H, y ∈ K:

fx(y) = ⟨y, Tx⟩K ,

i.e. for all x ∈ H, y ∈ K:

ψ(x, y) = ⟨Tx, y⟩K .

Applying the uniqueness of Riesz representation Theorem, we see that
T is linear.

Remark 14.7. To get an element in K representing a bounded linear
functional, we should give a bounded linear functional on K. Thus we
fix x ∈ X and consider ψ(x, ). ■

Theorem 14.6. LetH,K be 2 Hilbert spaces and T ∈ B(H,K). There
is a unique bounded operator S ∈ B(K,H) such that

∀x ∈ H, y ∈ K : ⟨Tx, y⟩K = ⟨x, Sy⟩H .
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Proof. Let
ψ : K ×H → K, (y, x) 7→ ⟨Tx, y⟩.

Then ψ is a sesquilinear bounded functional. Apply Theorem 14.5.

Definition (Adjoint Operator). Let H,K be 2 Hilbert spaces and T ∈
B(H,K). The operator S uniquely determined by

∀x ∈ H, y ∈ K : ⟨Tx, y⟩K = ⟨x, Sy⟩H .

is called the adjoint operator of T , which will be denoted by Th∗.

Remark 14.8. For convenience, we will denote the conjugate operator
of T by T b∗ and the adjoint operator of T by T ∗. ■

There is an interesting relation between adjoint and conjugate op-
erators:

Theorem 14.7. Let H,K be 2 Hilbert spaces and T ∈ B(H,K). Then
T ∗ ∈ B(K,H) is the unique bounded operator such that the following
diagram commutes:

H ←−−
T∗

K

φH

y yφK

H∗ ←−−−−
T b∗

K∗

Proof. We check that T b∗ ◦ φK = φH ◦ T ∗. Let an arbitrary element
x ∈ K be given. On the one hand:

φH ◦ T ∗(x) = φHT∗x

and hence for all y ∈ H[
φH ◦ T ∗(x)

]
(y) = φHT∗x(y) = ⟨y, T ∗x⟩H = ⟨Ty, x⟩K .

On the other hand:

(T b∗ ◦ φK)(x) = T b∗(φKx ) = φKx ◦ T

and hence

[(T b∗ ◦ φK)(x)
]
(y) =

[
φKx ◦ T

]
(y) = φKx (Ty) = ⟨Ty, x⟩K .

Since y is arbitrary, we have (T b∗ ◦ φK)(x) = (φK ◦ T ∗)(x). And x is
arbitrary, therefore T b∗ ◦ φK = φH ◦ T ∗.
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Remark 14.9. This theorem means that {φH : H ∈ Ob(Hil)} is a
natural transformation from the Banach functor to the Hilbert functor.

Remark 14.10. We can also define the adjoint operator by this. In
other words: both φH , φK are conjugate isometries, we define T ∗ just
by

T ∗ := (φH)−1 ◦ T b∗ ◦ φK .

Linearity and boundedness are ensured by conjugate linearity and lin-
earity of the maps and the fact that they are all bounded. ■

14.2 Lecture 14-2
This lecture was given by Chen Li.

Notation. In this lecture: We write H,K to be 2 Hilbert spaces unless
otherwise specified and the composition of two operators is written TS
for short sometimes.

Recall

In the last lecture, we studied the conjugate operator:

Definition. Let H, K be 2 Hilbert spaces and T ∈ B(H,K). There is
a unique operator T ∗ ∈ B(K,H) satisfies

∀x ∈ H, y ∈ K : ⟨Tx, y⟩K = ⟨x, T ∗y⟩H ,

which is called the adjoint operator of T .

Naturally we consider the special case: K = H and T = T ∗:

Definition. An operator T ∈ B(H) is said to be a self-adjoint op-
erator, if T ∗ = T .

14.2.1 More about adjoint operators

Then we introduce some useful equivalent conditions for an operator
to be a self-adjoint operator.

Proposition 14.8. Let T ∈ B(H). The following statements are
equivalent:

1. it’s a self-adjoint operator;

2. the bounded sesquilinear functional ΨT : (x, y) 7→ ⟨Tx, y⟩ induced
by T is Hermitian.
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Here a Hermitian functional means:

Definition. A sesquilinear functional Ψ: H × H → K is said to be
Hermitian, if

∀x, y ∈ H : Ψ(x, y) = Ψ(y, x).

Furthermore, if K = C, they are both equivalent to

3. for all x ∈ H, we have ⟨Tx, x⟩ ∈ R.

Proof of Proposition 14.8. We prove in the following order:

1 ⇐==⇒ 2 ====⇒ 3
K=C

====⇒ 2.

1 ⇐⇒ 2: T = T ∗ if and only if for all x, y ∈ H,

⟨Tx, y⟩ = ⟨x, Ty⟩ ,

i.e.
ΨT (x, y) = ΨT (y, x),

which means ΨT is Hermitian.
2 =⇒ 3: this doesn’t need K = C. Suppose ΨT is Hermitian, then

∀x ∈ H : ⟨Tx, x⟩ = ΨT (x, x) = Ψ(x, x) = ⟨x, Tx⟩,

thus ⟨Tx, x⟩ ∈ R
3 =⇒ 2: suppose K = C. We apply the polar identity (for a

seseuilinear functional, since the proof of polar identity only needs the
sesquilinearity of inner product): let

Q : H → K, x 7→ ΨT (x, x) = ⟨Tx, x⟩ .

Notice that, we have ImQ ⊆ R since ΨT is Hermitian. Then we have:
for all x, y ∈ H:

4ΨT (x, y) =

3∑
k=0

ikQ(x+ iky),

4ΨT (y, x) =

3∑
k=0

ikQ(y + ikx).

Checking that they are conjugate to each other is boring and hence
omitted. Therefore, we know ΨT is Hermitian.

Now we introduce some examples about adjoint operators.
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Example 48. Consider H = Kn and K = Km and T ∈ B(H,K) =
B(Kn,Km). Then there is a matrix representation of T with respect to
the standard bases:

{αj ∈ Kn : αj = (0, . . . , 0︸ ︷︷ ︸
j−1 items

, 1, 0, . . . , 0)t, j ∈ [n]},

{βk ∈ Kn : βk = ( 0, . . . , 0︸ ︷︷ ︸
k−1 items

, 1, 0, . . . , 0)t, k ∈ [m]}.

Let MT be the corresponding m × n matrix of T . Similarly T ∗ corre-
sponds to a matrix MT∗ . Then Tα =MTα for all α ∈ H.

Claim. We have MT∗ = MH
T , i.e. the matrix of T ∗ is just the

conjugate-transpose of MT .

Proof. Let MT = (aj,k)
j∈[n]
k∈[m] and MT∗ = (bk,j)

k∈[m]
j∈[n] . Then for all

j ∈ [n]:

Tαj =MTαj =

n∑
l=1

al,jβj .

For all k ∈ [m]:
⟨Tαj , βk⟩ = ⟨αj , T ∗βk⟩ .

Replace T, T ∗ with MT ,MT∗ and we get

m∑
l=1

al,j ⟨βl, βk⟩ =
n∑
l=1

b̄l,k ⟨αj , αk⟩ .

Thus ak,j = bj,k.

Example 49. Let E ↪→ H be a closed subspace. Consider the inclusion
mapping

ιE : E → H,x 7→ x.

Clearly it’s a bounded linear map.

Question 14.2. What’s the adjoint operator of ιE ?

Answer and Proof. The adjoint operator of ιE is the projection onto
E, i.e. ι∗E = PE : H → E, x 7→ xE where xE is the unique element in
E such that x− xE ⊥ E, as defined before.

Now we prove this. For all x ∈ E, y ∈ H:

⟨ιEx, y⟩H = ⟨x, ι∗E(y)⟩E =⇒ ⟨x, y − ι∗E(y)⟩E = 0.

Thus E ⊥ y − ι∗E(y), i.e. ι∗E(y) = PE(y) and hence PE = ι∗E .
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Remark 14.11. This also proves that P ∗
E = ιE . ■

Now we back to the topic about projection and look for some equiv-
alent descriptions of projection.

Theorem 14.9. Let P ∈ B(H), then the following statements are
equivalent:

1. it’s a projection operator composed with the embedding ιE : E →
H, i.e. P = ιE ◦ PE where E ↪→ H is a closed subspace and PE
is the projection onto E;

2. it’s idempotent and self-adjoint, i.e. P 2 = P and P ∗ = P ;

3. it’s idempotent and satisfies kerP ⊥ ImP ;

4. (in the case K = C) for all x ∈ H : ⟨Px, x⟩ = ∥Px∥2;

5. there is a closed subspace E ↪→ H such that ι∗E = P ◦ ιE .

Proof. Example 49 implies that 1 is equivalent to 5.
1 =⇒ 2. Let E ↪→ H and P = ιE ◦PE be given. Then for all x ∈ H:

P (x) = ιE ◦ PE(x) = PE(x) ∈ E, and hence

P 2(x) = P (P (x)) = ιE ◦ PE(P (x)) = ιE(P (x)) = P (x).

We proved P 2 = P . For all x, y ∈ H: we have x = PEx + x1, y =
PEy + y1 where x1 ⊥ E, y1 ⊥ E. Thus

⟨Px, y⟩ = ⟨x, y⟩ − ⟨x1, y⟩
= ⟨x, Py⟩+ ⟨x, y1⟩ − ⟨x1, Py⟩ − ⟨x1, y1⟩
= ⟨x, Py⟩+ ⟨x1 + y1⟩+ ⟨Px, y1⟩ − ⟨x1, y1⟩
= ⟨x, Py⟩ .

Therefore, P is self-adjoint.
2 =⇒ 3. Let x ∈ kerP and y ∈ ImP be given. Suppose z ∈ H

satisfies y = Pz, then

⟨x, y⟩ = ⟨x, Pz⟩ = ⟨Px, z⟩ = 0

since Px = 0. (In fact, P is self adjoint implies kerP ⊥ ImP .)
3 =⇒ 1. What we need to do is to find a closed subspace E ↪→ H

such that P = ιE ◦ PE . If P = PE , then ImP = E = ker(idH −P ) and
E⊥ = kerP . It’s natural to consider a kernel (that is naturally closed).
Thus, let E := ker(idH −P ), then we want to prove P = PE .
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• First, we have E = ImP . Let y ∈ ImP , then there is some x ∈ H
such that y = Px = P 2x and hence

0 = Px− P 2x = P (x− P (x)) = (idH −P )(Px) = (idH −P )(y),

which means y ∈ ker(idH −P ). And we proved ImP ⊆ E. Let
z ∈ E, i.e. z ∈ ker(idH −P ), i.e. z = Pz. Then z ∈ ImP . Thus
E ⊆ P .

• Secondly, we have P = PE . It suffices to prove that for all x ∈
H : x− Px ⊥ E. For all y ∈ E, we know y ∈ ImP and hence

⟨y, x− Px⟩ = 0,

where the equality follows from: kerP ⊥ ImP and

P (x− Px) = (P − P 2)(x) = 0 =⇒ x− Px ∈ kerP.

2 =⇒ 4. This doesn’t need K = C. For all x ∈ H, we have

⟨Px, x⟩ =
〈
P 2x, x

〉
= ⟨Px, P ∗x⟩ = ⟨Px, Px⟩ = ∥Px∥2.

4 =⇒ 2. Suppose K = C. Consider the sesquilinear functional

ΨP : H ×H → C, (x, y) 7→ ⟨Px, y⟩ .

Then Proposition 14.8 implies that T is self-adjoint. Since P is self-
adjoint, we have 〈

P 2x, x
〉
= ⟨Px, Px⟩ = ∥Px∥2,

thus
〈
(P 2 − P )x, x

〉
= 0. Then consider the polar identity for a

sesquilinear functional (whose proof is the same as the proof for the
case that a sesquilinear functional is an inner product, which only needs
the sesquilinearity of an inner product). We have: for all x, y ∈ H:

〈
(P 2 − P )x, y

〉
=

3∑
n=0

in
〈
(P 2 − P )(x+ iny), x+ iny

〉
= 0,

and hence P 2 − P = 0.
Everything has been proved as the following diagram.

(4) (2) (1) (5)

(3)

Page 161 of 198



14.2 Lecture 14-2 14 WEEK 14

In fact, we have also proved the following result

Corollary 14.10. If K = C then T ∈ B(H) satisfies that ∀x ∈
H : ⟨Tx, x⟩ = 0 if and only if T = 0.

Notice that: let pr(H) be the set of all projection operators in H
and cs(H) be the set of all closed subspaces of H, we have proved that
there is a bijection

Π: cs(H)→ pr(H)→, E 7→ PE ,

whose inverse can be interpreted as ker, i.e. the inverse of Π maps
a projection operator to the kernel of the projection operator. Since
there is a natural partial order on cs(H): ⊆. Then we define a partial
order ≤ on pr(H) as follows:

PM ≤ PE ⇐⇒ M ⊆ E,

i.e. let Π keeps the order. The following theorem give some equivalent
descriptions of this order.

Theorem 14.11. Let M,E ∈ cs(H) and PM , PE is their correspond-
ing projection operators (regarded as operators in B(H)). Then the
following statements are equivalent:

1. the order relation holds PM ≤ PE ;

2. they commute and satisfy: PEPM = PMPE = PM ;

3. the difference is a projection: PE − PM ∈ pr(H);

4. for all x ∈ H, ⟨PMx, x⟩ ≤ ⟨PEx, x⟩;

5. for all x ∈ H, ∥PMx∥ ≤ ∥PEx∥.

Remark 14.12. For the forth, the numbers are real, see Theorem 14.9.

Proof. 1 =⇒ 2: from definition, we know M ⊆ E. For all x ∈ H, we
have

x = PMx+ x1, x = PEx+ x2,

then PEPM (x) = PE(PMx) = PMx, since PMx ∈ M ⊆ E. Then
PM (PEx) = PM (x)+PM (x2) where x2 = x−PEx ⊥ E. Then x2 ⊥M
and hence PM (x2) = 0, which ensures that

PM (PEx) = PM (x) + PM (x2) = PM (x).

Above all, PMPE = PEPM = PM .
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2 =⇒ 3: it suffices to prove that PE − PM is idempotent and self-
adjoint. They are both true, since

(PE−PM )2 = P 2
E−PEPM−PEPM+P 2

M = PE−2PM+PM = PE−PM .,

and (PE − PM )∗ = P ∗
E − P ∗

M = PE − PM , as we wanted.
3 =⇒ 4: suppose PE − PM = PN , where N ∈ cs(H), then for all

x ∈ H:

⟨PEx, x⟩ − ⟨PMx, x⟩ = ⟨PEx− PMx, x⟩ = ⟨PNx, x⟩ = ∥PNx∥2 ≥ 0.

4 =⇒ 5: this follows from 4 of Theorem 14.9
5 =⇒ 1: consider

PM ≤ PE ⇐⇒ M ⊆ E ⇐⇒ M⊥ ⊇ E⊥.

For all x ∈ E⊥, we have PEx = 0 and hence ∥PMx∥ ≤ ∥PEx∥ = 0,
thus PMx = 0, i.e. x ∈ E⊥. Therefore, we know M⊥ ⊇ E⊥.

From the proof above, we find that there is some closed suspace
such that PE − PM = PN , and it’s natural to ask the relation between
E,M,N .

Theorem 14.12. Then the following statements are equivalent:

1. two operators are orthogonal: PMPN = 0;

2. two operators are orthogonal: PNPM = 0;

3. the addition of two operators is a projection, i.e. PM + PN is a
projection;

4. the two subspaces are orthogonal, i.e. M ⊥ N .

Proof. 1 ⇐⇒ 2: suppose 1 holds. We start from inner product since
it enjoys good properties; for all x ∈ H:

⟨PNPMx, PNPMx⟩ =
〈
PMx, P

2
NPMx

〉
= ⟨PMx, PNPMx⟩
= ⟨x, (PMPN )PMx⟩
= ⟨x, 0⟩
= 0

thus PNPMx = 0(∀x ∈ H), i.e. PNPM = 0. By the symmetry, we have
also PNPM = 0 =⇒ PMPN = 0.
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2 =⇒ 3: clearly PM + PN is self-adjoint. And

(PM + PN )2 = P 2
M + PMPN + PNPM + P 2

N = PM + PN ,

then PM + PN is a projection.
3 =⇒ 4: let x ∈M , y ∈ N be given. Suppose PE = PM +PN , then

PE − PM = PN , and Theorem 14.11 implies M ⊆ E. For all x ∈ M ,
then PEx = PMx; for all y ∈ N , PNy = y. Then for all x ∈M , y ∈ N :

2 ⟨x, y⟩ = ⟨PMx, y⟩+ ⟨x, PNy⟩
= ⟨PMx, y⟩+ ⟨PNx, y⟩
= ⟨PEx, y⟩
= ⟨x, y⟩ ,

thus ⟨x, y⟩ = 0. Since x, y are arbitrary, we have M ⊥ N .
4 =⇒ 1: for all x, y ∈ H, we have

⟨PMPNx, y⟩ = ⟨PNx, PMy⟩ = 0

since M ⊥ N . Thus PMPN = 0.

Here we talk something about algebra. From now on, view H as a
K-module.

Definition (Module). Let R be a commutative ring. An R-module
is an abelian group M with addition operation + and a map R×M →
M, (r,m) 7→ rm that satisfies the following axioms; for all m,m1,m2 ∈
M and r, r1, r2 ∈ R:

1. Identity Law (if R has an identity 1): 1m = m;

2. Distributive Law ♯1: (r1 + r2)m = r1m+ r2m;

3. Distributive Law ♯2: r(m1 +m2) = rm1 + rm2;

4. Associative Law: (r1r2)m = r1(r2m).

Remark 14.13. An R-module is a vector space over the ring R. ■

Then a vector space over K is naturally an K-module.

Definition. A chain of R-modules is a sequence of R-modules and
R-module homomorphisms

M0
f1−−−−→ M1

f2−−−−→ M2
f3−−−−→ · · · fn−−−−→ Mn. (34)
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An exact sequence is a chain (34) such that

∀k ∈ [n− 1] : ker fk+1 = Im fk.

A short exact sequence is a five-term exact sequence in which the
edge modules are 0; i.e. an exact sequence of the form, where the arrow
with domain/codomain being 0 is just 0:

0 −−−−→ M1
f−−−−→ M2

g−−−−→ M3 −−−−→ 0. (35)

Thus a chain of the form (35) is a short exact sequence if and only
if the four conditions are satisfied:

1. f is injective;

2. g is surjective;

3. g ◦ f = 0;

4. g(n) = 0 =⇒ ∃m : f(m) = n.

Claim. Suppose M,N ↪→ H satisfy M ⊥ N . Then the following chain
is a short exact sequence

0 −−−−→ M
ιM−−−−→ M ⊕N PN−−−−→ N −−−−→ 0. (36)

Proof. By definitions, we know ιM is injective and PN is surjective,
thus it suffices to show PN◦ιM = 0 and PN (y) = 0 =⇒ ∃x : ιM (x) = y.

1. PN ◦ ιM = 0: for all x ∈M , we have

PN ◦ ιM (x) = PN
(
ιM (x)

)
= PN (x) = 0,

since x ∈M and M ⊥ N implies PN (x) = 0.

2. PN (y) = 0 =⇒ ∃x : ιM (x) = y: suppose PN (y) = 0 for some
y ∈ M ⊕N , then y ∈ M ↪→ M ⊕N and hence M ∋ y = ιM (y).
To see that y ∈M : suppose y ∈M ⊕N satisfies PN (y) = 0, then
y ∈M ⊕N implies

y = y′ + z for some y′ ∈M, z ∈ N.

Now z ∈ N implies PN (z) = z, while PN (y) = PN (y′) + PN (z),
thus

0 = PN (y′) + z, i.e. − z = PN (y).

But M ∩ N = {0} since M ⊥ N , then z = 0, PN (y) = 0 and
hence y = y′ ∈M .
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Furthermore, we can apply the covariant functor B(H, ) on the chain
(35) to get another chain:

0 −−−−→ B(H,M)
(ιM )∗−−−−→ B(H,M ⊕N)

(PN )∗−−−−→ B(H,N) −−−−→ 0

where f∗ := B(H, f) is defined as follows for each f ∈ B(A,B):

f∗ : B(H,A)→ B(H,B), g 7→ f ◦ g.

Theorem 14.13. The chain

0 −−−−→ B(H,M)
(ιM )∗−−−−→ B(H,M ⊕N)

(PN )∗−−−−→ B(H,N) (37)

is exact.

Proof. We should prove 3 points: (ιM )∗ is injective, (PN )∗◦(ιM )∗ = 0
and (PN )∗(g) = 0 =⇒ ∃f ∈ B(H,M) : (ιM )∗(f) = g.

1. (ιM )∗ is injective; i.e. ker(ιM )∗ = 0. Let f ∈ ker(ιM )∗, equiv-
alently, (ιM )∗(f) = ι ◦ f = 0. This implies f = 0 and thus
ker(ιM )∗ = 0.

2. (PN )∗ ◦ (ιM )∗ = 0: this is implied by the functor property, but
we also check it: let f ∈ B(H,M), then

[(PN )∗ ◦ (ιM )∗
]
(f) = (PN )∗

[
(ιM )∗(f)

]
= (PN )∗(ιM ◦ f)
= PN ◦ ιM ◦ f
= 0 ◦ f
= 0,

since PN ◦ ιM = 0, which follows from the fact that (36) is exact.

3. (PN )∗(g) = 0 =⇒ ∃f ∈ B(H,M) : (ιM )∗(f) = g: from
(PN )∗(g) = 0, we know that Im g ⊥ N , while Im g ⊆ M ⊕ N ,
where M ⊥ N , thus Im g ⊆M . Then we have an element

f := g|M : H →M,x 7→ g(x)

that lies in B(H,M) satisfying g = (ιM )∗(f).

Remark 14.14. This theorem means that the functor B(H, ) is left-
exact. ■
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Definition. Two projection operators PM , PE are said to be orthog-
onal, if PMPN = 0 or PNPM = 0.

Finally, we prove that the family pr(H) ⊆ B(H) is closed. In gen-
eral, this family is not closed for addition, thus it has no algebraic
structure.

Lemma 14.14. If (Pn)n∈N ⊆ pr(H) and Pn
s−→ P (n → ∞), then

P ∈ pr(H).

Remark 14.15. Since convergence in norm implies strong conver-
gence, this implies that pr(H) is closed in B(H).

Proof of Lemma 14.14. We prove that P is bounded, satisfying
P 2 = P and P ∗ = P .

It is bounded: see Theorem 8.1 and apply the fact that ∥PE∥ ≤ 1
for all E ∈ cs(H).

It is self-adjoint: for all x, y ∈ H, we have

⟨Px, y⟩ =
〈
lim
n
Pnx, y

〉
= lim

n
⟨Pnx, y⟩

= lim
n
⟨x, Pny⟩

=
〈
x, lim

n
Pny

〉
= ⟨x, Py⟩ .

It is idempotent: for all x ∈ H, from P 2
n = Pn, we have∥∥(P 2 − P )x

∥∥ =
∥∥(P 2 − PnP + PnP − P 2

n + Pn − P )x
∥∥

≤ ∥(P − Pn)(Px)∥+ ∥Pn∥∥(P − Pn)x∥+ ∥(Pn − P )x∥
≤ ∥(P − Pn)(Px)∥+ ∥(P − Pn)x∥+ ∥(Pn − P )x∥
→ 0(n→∞),

since Pn
s−→ P . Thus (P 2 −P )x = 0 for all x, i.e. P is idempotent.

Theorem 14.15. Given H,

1. if (Qn)n∈N ⊆ Π(H) is orthogonal, then ∃!P ∈ Π(H) such that∑n
j=1Qj

s−→ P as n→∞.

2. if (En)n∈N ⊆ cs(H) is non-decreasing and E =
⋃
n≥1En, then

PEn

s−→ PE .
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Proof. 1: define Pn =
∑n
j=1Qj for all n ∈ N. Then Theorem 14.12

ensures that Pn is a projection operator, as you can prove by induction.
For all x ∈ H, for all n ∈ N, apply Theorem 29, we have

∥x∥2 ≥ ∥Pnx∥2 =

n∑
j=1

∥Qjx∥2.

Thus
∑∞
j=1∥Qjx∥

2
<∞ and hence for all m ≥ n

∥(Pm − Pn)x∥2 =

n∑
j=n+1

∥Qjx∥2 → 0(m,n→∞).

Now H is complete, we can define

P : H → H,x 7→ lim
n

n∑
j=1

Qjx

and Lemma 14.14 ensures that P ∈ Π(H). The uniqueness of P is just
the uniqueness of strong limit.

2: Theorem 14.11 implies that PEk
− PEj

∈ Π(H) and PEk
PEj

=
PEk

PEj
= PEj

for all k ≥ j. For all j < k:

(PEj+1
− PEj

)(PEk+1
− PEk

)

= PEj+1
PEk+1

− PEj
PEk+1

− PEj+1
PEk

+ PEj
PEk

= PEj+1
− PEj

− PEj
+ PEj

= 0,

and
PE1

(PEk
− PEj

) = PE1
− PE1

= 0.

Then we have an orthogonal projection sequence as following

PE1
, PE2

− PE1
, . . . , PEj+1

− PEj
, . . .

Apply 1 to this sequence and we get an operator P such that PEn → P .
Now we prove P = PE . Suppose P = PF for some F ∈ cs(H) and we
need to prove F = E. For all n ≥ 1, En ⊆ E, Theorem 14.11 implies
that

∀x ∈ H : ∥PEn
x∥ ≤ ∥PEx∥.

Then
∀x ∈ H : ∥PFx∥ = lim

n
∥PEn

x∥ ≤ ∥PEx∥,
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i.e. F ⊆ E. On the other hand, taking x ∈ En, when k ≥ n, we have
Ek ⊇ En and PEk

x = x. Thus

PF (x) = lim
k
Pk(x) = x ∈ F.

Since n ∈ N is arbitrary, we have
⋃
n≥1En ⊆ F . Since F is closed, we

have F ⊇ E.
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15 Week 15

15.1 Lecture 15-1
This lecture was given by Deyu Yu.

In this lecture, we assume that H,K are Hilbert spaces over C.
In this lecture, an isometry means an operator that satisfies

∀x : ∥ux∥ = ∥x∥.

It’s not needed to be a bijection! If an operator is isometric and bijec-
tive, we will say it’s an isometric isomorphism in this lecture.

15.1.1 Normal Operator

Definition. An operator is said to be normal, if it satisfies the condi-
tions in Theorem 15.1.

Theorem 15.1. Let u ∈ B(H). The following statements are equiva-
lent:

1. they commute: u∗u = uu∗;

2. for all x ∈ H, we have ∥ux∥ = ∥u∗x∥, i.e. ∥ ∥ ◦ u = ∥ ∥ ◦ u∗.

Proof of Theorem 15.1. For all x ∈ H:

∥ux∥2 = ⟨ux, ux⟩ = ⟨x, u∗ux⟩ ,

and
∥u∗x∥2 = ⟨u∗x, u∗x⟩ = ⟨x, uu∗x⟩ ,

since (u∗)∗ = u. Thus ∥ux∥ = ∥u∗x∥ for all x ∈ H if and only if

⟨(u∗u− uu∗)x, x⟩ = 0

holds for all x ∈ H. Corollary 14.10 implies the result.

Example 50. Consider H = K = Cn and T ∈ B(Cn). Then T is
normal if and only if the matrix MT satisfies MTM

H
T = MH

T MT , i.e.
MT is a normal matrix.

Example 51. Let I ⊆ R be an interval (we don’t care the boundedness
of this interval) and an essentially bounded (with respect to Lebesgue
measure) map f : → C. Let L2 = L2(I) and L∞ = L∞(I). The map

u : L∞ → B(L2), f 7→ uf ,
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is linear and bounded, where

uf : L2 → L2, g 7→ fg.

Clearly uf is linear and satisfies ∥uf∥ ≤ ∥f∥∞ for all f ∈ L∞. If
0 < a < ∥f∥, there is a subset A ⊆ I such that ∞ > m(A) > 0 and for
all x ∈ A : |f(x)| > a. Then

uf (χA) = f · χA

and hence

∥uf (χA)∥2 =

∫
I

|fχA|2 dm =

∫
A

|f |2 dm > a2∥χA∥2.

Therefore, ∥uf∥ > a for all a < ∥f∥∞ and hence ∥uf∥ = ∥f∥∞. Thus
u is an isometry from L∞ to a subspace of B(L2).

Now we go back to talk about normal operators.

Claim. For all f ∈ L∞, the operator induced by f , i.e. uf is normal.

Proof. For all g, h ∈ L2:

⟨ufg, h⟩ =
∫
I

uf (g)h̄dm =

∫
I

fgh̄dm.

Similarly, for f̄ ∈ L∞ we have〈
g, uf̄h

〉
=

∫
I

guf̄ (h) dm =

∫
I

gfh̄dm.

Thus we know u∗f = uf̄ . It’s easy to see that |f |2 ∈ L∞ and

ufuf̄ = uf̄uf = u|f |2 ,

i.e. ufu∗f = u∗fuf .

In fact, for all f1, f2 ∈ L∞, we have uf1uf2 = uf2uf1 = uf1f2(algebra
homomorphism). ■

Remark 15.1. Normal operators have the following properties.

1. An operator u is normal if and only if it’s adjoint operator is
normal, since u∗∗ = u;

2. If an operator u is normal, then for all polynomial p(t) ∈ C[t],
the operator p(u) defined by (39) is also normal. ■
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Theorem 15.2. Let u ∈ B(H) be a normal operator. For all λ ∈ C,
x ∈ H, we have

u(x) = λx ⇐⇒ u∗(x) = λ̄x.

Proof. From the definition of kernel: u(x) = λx if and only if x ∈
ker(u − λ idH). Since (u − λ idH)∗ = u − λ̄ idH and x ∈ ker(u −
λ idH) if and only if ∥(u− λ idH)x∥ = 0, Theorem 15.1 implies that
∥(u− λ idH)x∥ = 0 if and only if

∥∥(u∗ − λ̄ idH)x
∥∥ = 0.

Definition (Characteristic Subspace). Let u ∈ B(H) and λ ∈ C. The
subspace

Eλ := ker(u− λ idH)

is called the characteristic subspace of u with respect to λ.

Theorem 15.3. Let u ∈ B(H) be a normal operator and λ ∈ C, µ ∈ C
such that λ ̸= µ. Then we have

Eλ ⊥ Eµ.

Proof. Let x ∈ Eλ and y ∈ Eµ be given. Then

λ ⟨x, y⟩ = ⟨λx, y⟩ = ⟨ux, y⟩ = ⟨x, u∗y⟩ .

And Theorem 15.2 implies that u∗y = µ̄y, and hence

λ ⟨x, y⟩ = µ ⟨x, y⟩ =⇒ ⟨x, y⟩ = 0.

Corollary 15.4. Let E :=
∑
λ∈CEλ ↪→ H. Then K := E is a Hilbert

space and we have

1. direct sum decomposition: K ∼=
⊕

λ∈CEλ, where the direct sum
means⊕

λ∈C
Eλ := {(xλ)λ∈C ∈

∏
λ∈C

Eλ | xλ ∈ Eλ,
∑
λ∈C

∥∥xλ∥∥2 <∞};
2. the operator u|K⊥ has no eignevalues.

Proof. The second is easy: if u|K⊥ has an eigenvector v ∈ K⊥ with
respect to the eigenvalue λ, then v ∈ K

⋂
K⊥, thus v = 0. That’s a

contradiction.
There is a natural map

ψ :
⊕
λ∈C

Eλ → K, (xλ)λ∈C 7→
∑
λ∈C

xλ,
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where
∑
λ∈C xλ is defined as a limit of net. The existence of limit is

guaranteed by ∑
λ∈C

∥∥xλ∥∥2 <∞ (38)

and Question 16.1. Equation (38) should be proved by taking all finite
sets of C and apply Theorem 29. Clearly ψ is an isometric isomorphism.

Theorem 15.5. Let u ∈ B(H) be a normal operator. Then we have

keru = (Imu)⊥, Imu = (keru)⊥.

This follows from the following Theorem.

Theorem 15.6. Let u ∈ B(H,K). We have

keru = (Imu∗)⊥, Imu = (keru∗)⊥.

Proof of Theorem 15.6. Since

x ∈ keru ⇐⇒ u(x) = 0 ∈ K
⇐⇒ ⟨u(x), y⟩K = 0∀y ∈ K
⇐⇒ ⟨x, u∗(y)⟩H = 0∀y ∈ K
⇐⇒ x ∈ (Imu∗)⊥.

Replace u by u∗, then the duality (32) and u∗∗ = u implies the second
equality.

Here we introduce some equivalent conditions of isometry.

Theorem 15.7. Let u : H → K be a bounded operator. The following
statements are equivalent.

1. it’s an isometry;

2. it satisfies: ⟨ux, uy⟩K = ⟨x, y⟩H for all x, y ∈ H;

3. it has a left inverse u∗, i.e. u∗u = idH .

Proof. 1 =⇒ 2: apply the polar identity.
2 =⇒ 3: for all x, y ∈ H, we have

⟨x, y⟩ = ⟨ux, uy⟩ = ⟨x, u∗uy⟩ .

This implies y = u∗uy for all y ∈ H, i.e. u∗u = idH .
3 =⇒ 1: for all x ∈ H, we have u∗ux = x and then

∥x∥2 = ⟨x, x⟩ = ⟨x, u∗ux⟩ = ⟨ux, ux⟩ = ∥ux∥2.
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Remark 15.2. If dimH = n ∈ N, then u ∈ B(H) is an isometry
implies that u is unitary. If dimH = ∞, we will see that things are
different , see Example 52. ■

Definition. An operator u : H → K is called a unitary operator if
it’s a bijection with inverse u−1 = u∗. Here we say an operator v is an
inverse of u, if vu = idH and uv = idK .

Theorem 15.8. Let u : H → K be a bounded operator. The following
statements are equivalent.

1. the operator u is unitary;

2. it’s a surjective isometry;

3. it satisfies uu∗ = idK , and u∗u = idH ;

4. it’s an isometric isomorphism.

Proof. We will prove in the following order:

1 ====⇒ 4~ww ww�
2 ⇐==== 3

1 =⇒ 4: suppose u−1 = u∗ and it suffices to show that u is isometric.
For all x ∈ H:

∥x∥2 = ⟨x, x⟩ = ⟨x, u∗ux⟩ = ⟨ux, ux⟩ = ∥ux∥2,

since u−1 = u∗ implies u∗ux = x.
4 =⇒ 3: suppose u is an isometric isomorphism. Then Theorem 15.7

implies u∗u = idH . Therefore, we know uu∗ = idK and u∗u = idH since
the inverse map of a bijection is unique, and its left inverse must be
the inverse.

3 =⇒ 2: clearly u is surjective. It’s also isometric by Theorem 15.7.
2 =⇒ 1: this also follows from Theorem 15.7.

Example 52. Consider the space of square-summable sequence ℓ2 and
an operator u is defined as

u : ℓ2 → ℓ2, (xn)n∈N 7→ (0, x1, x2, . . .),

i.e. the right-shifting operator. Then u is isometric but not unitary,
since Imu ̸= ℓ2. ■
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The following example describes some unitary operators.

Example 53. Consider the measure space (I,P(I), µ) where µ is the
counting measure on I. Let α = (αi)i∈I ∈ ℓ∞(I). There is an operator

uα : ℓ2(I)→ ℓ2(I), x = (xi)i∈I 7→ αx = (αixi)i∈I .

We will prove some properties of uα.

Proposition. The following statements are equivalent.

1. the operator uα is unitary;

2. the operator uα is isometric;

3. for all i ∈ I, we have |αi| = 1.

Proof. 1 =⇒ 2: a unitary operator must be isometric.
2 =⇒ 3: for all i ∈ I, take the characteristic function χ{i} ∈ ℓ2(I)

and we see |αi| = 1.
3 =⇒ 2: it follows from the fact that ∀β1, β2 ∈ ℓ∞(I), uβ1β2

=
uβ1uβ2 and the claim:

Claim. For all α ∈ ℓ∞(I), the adjoint operator of uα is just uᾱ.

Taking an arbitrary element i, j ∈ I, we see〈
uαχ{i}, χ{j}

〉
= αiδ

i
j =

〈
χ{i}, uᾱχ{j}

〉
,

and by definition of adjoint operators〈
uαχ{i}, χ{j}

〉
=

〈
χ{i}, u

∗
αχ{j},

〉
.

We proved that
〈
χ{i}, uᾱχ{j}

〉
=

〈
χ{i}, u

∗
αχ{j},

〉
. Now the density of

span{χ{i} : i ∈ I} implies that

⟨f, u∗αg⟩ = ⟨f, uᾱg⟩

for all f, g ∈ ℓ2(I), and hence u∗α = uᾱ.

15.1.2 Partial Isometric Operator

Definition. Let u ∈ B(H,K). The space (keru)⊥ is called the sup-
port subspace of u, denoted by suppu.

Remark 15.3. This is a generalization of the support of a function
f : X → C:

supp f := {x ∈ X | f(x) ̸= 0},
where X is a topological space.
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Definition. An operator u ∈ B(H,K) is called a partial isometric
operator, if v := u|suppu is isometric.

Remark 15.4. We have the following properties.

1. for all u ∈ B(H,K): the support subspace of u∗ is suppu∗ =
(keru∗)⊥ = Imu;

2. for all u ∈ B(H,K): v := u|suppu is injective, since ker v =
keru ∩ suppu = {0};

3. If u be a partial isometric operator, then the operator v = u|suppu
is an isometric isomorphism from suppu to suppu∗;

Proof of 3. It suffices to show that Imu = Im v. For y ∈ Imu,
there is some x ∈ H such that u(x) = y. Then the projection of x
upon suppu, denoted by xsuppu satisfies v(xsuppu) = u(xsuppu) = u(x).
Thus Im v = Imu. Then v is an isometric isomorphism from suppu to
Imu, which implies that Imu is closed and hence Imu = suppu∗.

Theorem 15.9. Let u be a partially isometric operator. Then

1. the composition is u∗u = Psuppu;

2. the inverse of the unitary operator u|suppu : suppu → Imu is
u∗|Imu : Imu→ suppu;

3. the adjoint operator u∗ is a partially isometric operator.

Exercise 15.1. Let H be a Hilbert space over C. Then ∥T∥ = 0 if
and only if ⟨Tx, x⟩ = 0 holds for all x ∈ H.

Exercise 15.2. Let T ∈ B(H), prove that: A + A∗ = 0 if and only if
Re ⟨Tx, x⟩ = 0 holds for all x ∈ H.

Hint: apply Corollary 14.10.

15.1.3 Look Back

Here we overview what we have learnt about Hilbert spaces.
First, we studied “inner product space”. Cauchy-Schwarz in-

equality ensures that an inner product induces a norm and hence we
can consider the dual space of an inner product space. Theorem 12.4
is of great importance and you should also know the version for a
sesquilinear functional. Parallelogram Law was used to prove the
projection theorem. Theorem 12.6 was used to prove that the norm of
H∗ is induced by an inner product (Theorem 12.4 was also used).
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Secondly, a Hilbert space is an inner product space that is com-
plete. Things about orthogonality were discussed, such as Bessel’s
Inequality, Parseval’s Identity and Schmidt orthogonalization progress.
We defined the projection operator for a closed subspace of a Hilbert
space. Theorem 13.11 implies the decomposition: H = E⊕E⊥ where
E ↪→ H is closed.

Finally, Riesz Representation Theorem came and so was ad-
joint operator.

15.2 Lecture 15-2
Final exam doesn’t need this lecture. Let H be a Hilbert space and X
be a Banach space, in this lecture.

15.2.1 Introduction to Spectrum Theory

Given a Banach space A, there is some operations: addition +, scalar-
multiplication · and norm ∥ ∥.

Example 54. Consider the Banach space A = Lp(Ω), where we have
a measure space (Ω,Σ, µ) and p ∈ [1,∞].

What if we consider more operations on A? Consider a map, called
the multiplication on A, defined as follows:

· : A×A → A, (x, y) 7→ x · y,

which is bilinear and associative, i.e. for all x, y, z ∈ A and α ∈ K:

(x+ y) · z = x · z + y · z,
z · (x+ y) = z · x+ z · y,
α(x · y) = (αx) · y = x · (αy),

(x · y) · z = x · (y · z).

We also write x·y = xy for simplicity. It’s natural to ask the multiplica-
tion is continuous (for more good results, we want it to be contractive),
i.e.

∀x, y ∈ A : ∥x · y∥ ≤ ∥x∥∥y∥.

The definition of a unity is natural. That’s how we define an algebra.

Definition (Banach Algebra). A Banach Algebra is a Banach space
A with a continuous multiplication. For simplicity, a Banach algebra
is also called an algebra.
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Definition (Unity). LetA be an algebra. If there is an element 1A ∈ A
such that 1Ax = x1A = x holds for all x ∈ A, then 1A is called the
unity of A. An algebra that has a unity is called a unital algebra.

Remark 15.5. Clearly, if an algebra has a unity, then it’s unique.

Definition. An algebra is said to be commutative, if for all x, y ∈ A:
xy = yx.

What if there is one more map on this algebra?

Definition (Involution). Let A be an algebra. An involution on A
is a map

∗ : A → A, x 7→ x∗

that is conjugate-linear and satisfies

∀x, y ∈ A : (xy)∗ = y∗x∗, ∥xx∗∥ = ∥x∥2, x∗∗ = x,

where x∗∗ := (x∗)∗. For x ∈ A, x∗ is also called the adjoint to x.

Remark 15.6. This is a generalization of adjoint in Hilbert spaces.
We can define self-adjoint element in A as what we did for Hilbert
spaces.

Definition. An algebra with an involution is called a C∗-algebra.

Example 55. The Banach space B(H) is a C∗-algebra.

This follows from the following lemma.

Lemma 15.10. For all T ∈ B(H), we have ∥T∥2 = ∥T ∗T∥ = ∥TT ∗∥.

Proof. We know ∥T ∗T∥ ≤ ∥T∥∥T ∗∥ = ∥T∥2. For all x ∈ H, we have

∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨x, T ∗Tx⟩ ≤ ∥T ∗T∥∥x∥2.

Then we know ∥T∥2 ≤ ∥T ∗T∥. The another equality follows from
(T ∗T )∗ = T ∗T and ∥T∥ = ∥T ∗∥.

Consider a Banach space X, then there is an algebra A = B(X).
Suppose T ∈ A is invertible, then Theorem 7.4 implies that T−1 ∈ A.
Thus we define:

Definition. An element x ∈ A is said to be invertible, if there is an
element y ∈ A such that

xy = yx = 1A.

And such y is called the inverse of x, denoted by x−1.
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Remark 15.7. Things shoul be noticed:

1. the inverse of x is unique;

2. if y = x−1, then x = y−1;

3. for a square matrix A ∈ Kn×n, if there is a square matrix B such
that AB = I, then we have BA = I and hence B = A−1. But in
a unital algebra, it’s possible xy = 1A while yx ̸= 1A.

Example 56. Consider X = ℓ2, the unital algebra A = B(ℓ2). Con-
sider T, S ∈ A, defined by

T : ℓ2 → ℓ2, (xn)n∈N 7→ (xn+1)n∈N,

S : ℓ2 → ℓ2, (xn)n∈N 7→ (0, x1, x2, . . .).

Then T ◦ S = 1A while it’s impossible that S ◦ T = 1A.

From now on, we assume all algebras mentioned are unital. The
following proposition shows some relations in a C∗-algebra.

Proposition 15.11. Let A be a C∗-algebra and x, y ∈ A, then

1. the unity is self-adjont, i.e. 1∗
A = 1A;

2. if x is invertible, then (x−1)−1 = x;

3. if both of x, y are invertible then so is xy and (xy)−1 = y−1x−1;

4. if x is invertible, then so is x∗ and (x∗)−1 = (x−1)∗.

Proof. We prove the first and the last only, since the second and the
third follow from the uniqueness of inverse. For the first, apply the
uniqueness of 1A and

∀x ∈ A : 1Ax = x1A = x,

which implies
∀x ∈ A : x∗1∗

A = 1
∗
Ax

∗ = x∗.

We’re done, since for all x ∈ A, we have x = (x∗)∗. The last follows
from

x∗(x−1)∗ = (x−1x)∗ = 1
∗
A = 1A,

(x−1)∗x∗ = (xx−1)∗ = 1
∗
A = 1A.

and the uniqueness of inverse.
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We can define the polynomial for an element in a unital algebra A.

Example 57. Let A be an algebra and x ∈ A. For a complex polyno-
mial p(t) =

∑n
k=0 akt

k ∈ C[t], define

p(x) :=

n∑
k=0

akx
k, (39)

where x0 := 1A. Then p(x) ∈ A.

Similarly, we can define the power series for an element in a unital
algebra A.

Example 58. Let (an)n≥0 be a complex sequence and x ∈ A, where A
is an algebra. We show that

∑
n≥0 anx

n is meaningful in some sense.
For convenience, consider an = 1/n!(∀n ≥ 0).

Claim. There is a unique y ∈ A such that∑
n≥0

xn

n!
= y

in the meaning that y = limn Pn(x), where Pn(t) ∈ C[t] is defined as

Pn(t) =

n∑
k=0

tn

n!
.

Proof. Since A is a Banach space, we can apply Proposition 3.1. It
suffices to show that (P (x)n)n∈N is Cauchy. For all m ≥ n ≥ 1:

∥Pm(x)− Pn(x)∥ =

∥∥∥∥∥
m∑

k=n+1

Pn(x)

∥∥∥∥∥
≤

m∑
k=n+1

1

k!
∥xn∥

≤
m∑

k=n+1

1

k!
∥x∥n

→ 0(m,n→∞)

since for all y ∈ R,
∑
n≥1 y

n/n! converges (ratio test works).

Theorem 15.12. Let X be a Banach space, A := B(X) and x ∈ A
satisfying ∥x∥ < 1. Then 1A − x is invertible.
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Aim. We want to find y ∈ A such that yx = xy = 1A. Recall that,
for x ∈ R such that x < 1, we have

(1− x)−1 =
∑
n≥0

xn.

Proof. Clearly
∑
n≥0 x

n converges in A. Suppose A ⊇ (an)n∈N → a ∈
A and b ∈ A, then

∀n ∈ N : ∥ban − ba∥ ≤ ∥b∥ · ∥an − a∥

implies (ban)n∈N → ba. Thus

(1A − x)
∑
n≥0

xn = (1A − x) lim
N

N∑
n=0

xn

= lim
N

(1A − x)
N∑
n=0

xn

= lim
N

(1A − xN+1)

= 1A.

The another equality
∑
n≥0 x

n(1A − x) = 1A can be checked similarly
and we’re done.

Question 15.1. Let λ ∈ C and T ∈ B(X), where X is a Banach space.
When will λI − T be invertible? Here I = 1B(X).

Partial Answer. A sufficient condition is: |λ| > ∥T∥. If |λ| > ∥T∥ >
0, then λ−1 ∈ C and λI − T is invertible if and only I − λ−1T is
invertible. Then Theorem 15.12 implies:

(λI − T )−1 = λ−1
∑
n≥0

(T/λ)n.

And we can also show that∥∥(λI − T )−1
∥∥ ≤ 1

|λ| − ∥T∥
.

If T is an invertible operator, then λ = 0 works.
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15.2.2 Recall Linear Algebra

We studied the eigenvalue of matrices: let A be a n×n complex matrix,
a complex number is called an eigenvalue of A, if there is a (column)
vector x ∈ Cn such that

(λI −A)x = 0,

where I is the identity matrix. Equivalently, ker(λI − A) ̸= {0}. In
linear algebra, a square matrix (also viewed as a linear transformation)
is invertible if and only if it has the trivial kernel.

Definition. Let X be a Banach space and T ∈ B(X). If λI − T is not
invertible, then λ is said to be a spectrum point of T . The set of all
spectrum points of T is denoted by σ(T ), called the resolvent set of T .

Definition. Let X be a Banach space and T ∈ B(X). If λI − T is
invertible, then λ is said to be a regular point of T . The set of all
regular points of T is denoted by ρ(T ), called the spectrum set of T .

Clearly we have C = σ(T )
⊔
ρ(T ).

Question 15.2. Let T ∈ B(X) and r > 0 satisfy that σ(T ) ⊆ {z ∈
C : |z| < r}. Can we give an upper bound of r?

Question 15.1 shows that r ≤ ∥T∥.

Example 59. Consider the shift operator

T : ℓ2 → ℓ2, (xn)n∈N 7→ (0, x1, x2, . . .).

Clearly, ∥T∥ = 1 and hence σ(T ) ⊆ {z ∈ C : |z| ≤ 1}.

15.2.3 Classification of Spectrum and so on

For an algebra A = B(X), where X is a Banach space, the spectrum
of T ∈ A is

σ(T ) = {λ ∈ C : λI − T is not invertible}.

Let I := 1A. If λ ∈ σ(T ), then there are 3 cases:

Case 1. the operator λI−T has a non-trivial kernel, i.e. ker(λI−T ) ̸= {0}

Case 2. the operator λI − T has a trivial kernel but it’s image, being
smaller than X, is dense in X, i.e.

ker(λI − T ) = {0}, Im(λI − T ) = X, Im(λI − T ) ̸= X.
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Case 3. the operator λI−T has a trivial kernel but it’s image is not even
dense in X, i.e.

ker(λI − T ) = {0}, Im(λI − T ) ̸= X.

Then we know

σ(T ) = σp(T )
⊔
σc(T )

⊔
σr(T ).

Remark 15.8. A complex number λ ∈ C is a spectrum of T , if and
only if the following chain

· · · −−−−→ 0 −−−−→ X
λI−T−−−−→ X −−−−→ 0 −−−−→ · · ·

fails to be exact.

Question 15.3. Let T ∈ B(X) be a compact operator. Can we say
about 0 ∈ σ(T )?

Answer and Proof. If dimX = ∞, it holds. Suppose dimX = ∞
and 0 /∈ σ(T ), i.e. T is invertible. Then T−1 ∈ B(X). Since T ∈ C(X)
and C(X) is an ideal of B(X), we find

I = TT−1 ∈ C(X).

The identity operator I is compact if and only if I(BX) = BX is com-
pact, equivalently, dimX <∞ (see Theorem 6.8). Thus, it’s sure that
0 ∈ σ(T ) when dim(X) =∞.

If dimX < ∞, then all operators are bounded and hence of finite-
rank. Thus all operators are compact. But clearly the identity operator
I is invertible and hence 0 /∈ σ(I).

Special operators have special spectrum:

Theorem 15.13. Let H be a Hilbert space and T ∈ B(H).

1. if T = T ∗, then σ(T ) ⊆ R;

2. if T ≥ 0, then σ(T ) ⊆ [0,∞).

Definition. An operator T ∈ B(H) is said to be positive-semidefinite,
denoted by T ≥ 0, if for all x ∈ H, we have ⟨Tx, x⟩ ∈ [0,∞).

Remark 15.9. A positive-semidefinite operator is self-adjoint.
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16 Week 16

16.1 Lecture 16-1
16.1.1 Exercise Course: Question Part

Question 16.1. Let H be a Hilbert space and (en)n∈N be a sequence
of orthogonal vector, i.e. (en, em) = 0 when n ̸= m. Prove that the
following statements are equivalent:

1. the sequence (
∑n
j=1 ej)n∈N converges;

2. the sequence (
∑n
j=1 ej)n∈N converges weakly;

3. the sum
∑
n≥1∥en∥

2 is finite.

Question 16.2. Let X be a Banach space and T ∈ L(X). Prove that:
T ∈ B(X) if and only if for all x ∈ X: (xn)n∈N ⇀ x implies that
(Txn)n∈N ⇀ Tx.

Question 16.3. Let X be a reflexive linear normed space. Prove that:
for all f ∈ X∗∗, (fn)n∈N ⊆ X∗∗ such that (fn)n∈N ⇀∗ f , we have
(fn)n∈N ⇀ f .

Remark 16.1. For a linear normed space X with a pre-dual space X∗,
we know that (fn)n∈N ⇀ f implies (fn)n∈N ⇀

∗ f .

Question 16.4. Let X be a linear normed space X with a closed
subspace M ↪→ X. Show that: if (xn)n∈N ⊆ M and x0 ∈ X satisfy
that (xn)n∈N ⇀ x), then x0 ∈M .

Question 16.5. Let X be a reflexive linear normed space. Prove that:
if (xn)n∈N ⊆ X satisfies that ∀f ∈ X∗:

lim
m,n
|f(xm)− f(xn)| = 0,

then there is some x ∈ X such that (xn)n∈N ⇀ x.

16.1.2 Exercise Course: Solution Part

Proof of Question 16.1. Let (xn)n∈N := (
∑n
j=1 ej)n∈N. We will

prove in the following order

1 ====⇒ 2 ====⇒ 3 ====⇒ 1.

1 =⇒ 2: suppose (xn)n∈N → x ∈ H. For all f ∈ H∗, we have

|f(xn)− f(x)| ≤ ∥f∥∥xn − x∥ → 0(n→∞).
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Thus (xn)n∈N ⇀ x.
2 =⇒ 3: weak convergence implies that (xn)n∈N is weakly bounded,

and then Exercise 11.1 implies that (xn)n∈N is bounded. Suppose M
is a bound of (xn)n∈N. Then for all n ∈ N: Theorem 29 implies that

n∑
j=1

∥ej∥2 = ∥xn∥2 ≤M2,

therefore ∑
n≥1

∥en∥2 = sup
n∈N
∥xn∥2 ≤M2 <∞.

3 =⇒ 1: it suffices to show that (xn)n∈N is a Cauchy sequence, since
H is complete. For all n > m:

∥xn − xm∥2 =

n∑
j=m+1

∥ej∥2 → 0(n→∞).

Therefore, (xn)n∈N is a Cauchy sequence and hence (xn)n∈N converges.

Proof of Question 16.2. Necessity: for all (xn)n∈N ⊆ and x ∈ X
such that (xn)n∈N ⇀ x, we have

lim
n
f(Txn) = lim

n
(T ∗f)(xn) = (T ∗f)(x) = f(Tx),

since T ∗f ∈ X∗ and (xn)n∈N ⇀ x, where T ∗ : X∗ → X∗, f 7→ f ◦ T is
the conjugate operator of T .

Sufficiency (method 1): consider proof by contradiction. If T is not
bounded, then

sup
∥x∥=1

∥Tx∥ =∞,

and we can pick a sequence (xn)n∈N such that ∀n ∈ N, ∥xn∥ = 1 and
∥Txn∥ ≥ n.

Claim. The sequence (Tyn)n∈N can’t converge to 0 weakly.

To see the claim, if suffices to see that: weak convergence im-
plies that (Tyn)n∈N is weakly bounded, and hence bounded, which
is a contradiction. Now consider the sequence (yn)n∈N, where yn :=
(
√
n/∥Txn∥)xn, then we have ∥yn∥ ≤ 1/

√
n→ 0(n→∞) and ∥Tyn∥ =√

n → ∞(n → ∞). Now we have a sequence (yn)n∈N such that
(yn)n∈N ⇀ 0 and (Tyn)n∈N ̸⇀ 0, contradiction with the assumption.

Sufficiency (method 2): consider Closed Graph Theorem, see
Theorem 8.8. It suffices to show that the graph G(T ) is closed inX×X,
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i.e. ∀(xn, Txn)n∈N such that (xn)n∈N → x ∈ X, (Txn)n∈N → y ∈ X
then we have y = Tx. Suppose (xn)n∈N → x ∈ X, (Txn)n∈N → y ∈ X,
then (xn)n∈N ⇀ x and (Txn)n∈N ⇀ y. And the assumption means that
(Txn)n∈N ⇀ Tx. The uniqueness of weak limit implies y = Tx.

Remark 16.2. Both proofs of sufficiency need the Banach Steinhaus
Theorem.

Proof of Question 16.3. Suppose that (fn)n∈N ⊆ X∗∗, f ∈ X∗∗

such that (fn)n∈N ⇀
∗ f , i.e. ∀x ∈ X∗: fn(x) → f(x). Thus: ∀x ∈ X∗:

x̂(fn) → x̂(f), where x̂ = ιX∗(x) and ιX∗ is the natural embedding of
X∗. Then (fn)n∈N ⇀ f follows from the following claim:

Claim. For all F ∈ X∗∗∗, there is some x ∈ X∗ such that F = ιX∗(x).

In other words, the natural embedding ιX∗ is also an isometry, i.e.
X∗ is also reflexive. That’s true, since

ιX ◦ ι−1
X = idX∗∗ ∧ ι−1

X ◦ ιX = idX

implies that (by the property of the functor ∗)

ι∗X ◦ (ι−1
X )∗ = idX∗ ∧ (ι−1

X )∗ ◦ ι∗X = idX∗∗∗ .

And Theorem 11.1 implies that ∥ι∗X∥ =
∥∥(ι∗X)−1

∥∥ = 1, which means
ι∗X is an isometry. Then that X∗ is reflexive follows from the following
claim:

Claim. We have
ι∗X ◦ ιX∗ = idX∗ ,

which implies ι−1
X∗ = ι∗X (the left inverse of an invertible map is the

inverse).

Given arbitrary f ∈ X∗ and x ∈ X. On the one hand

ι∗X ◦ ιX∗(f) = ι∗X(f̂) = f̂ ◦ ιX ∈ X∗,

where X∗∗∗ ∋ f̂ : X∗∗ → K, A 7→ A(f). Then[
ι∗X ◦ ιX∗(f)

]
(x) = f̂ ◦ ιX(x) = f̂(x̂) = x̂(f) = f(x).

On the other hand [
idX∗(f)

]
(x) = f(x).

Then we proved ι∗X ◦ ιX∗(f) = idX∗(f) since x ∈ X is arbitrary. There-
fore, we proved ι∗X ◦ ιX∗ = idX∗ since f ∈ X∗ is arbitrary.
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Proof of Question 16.4. See Exercise 9.4. If x0 /∈ M , we have
d(x0,M) > 0 since M is closed and there is a linear functional such that
f(x0) ̸= 0 while f |M = 0 and hence it’s impossible that (xn)n∈N ⇀ x0,
which is a contradiction.

Remark 16.3. To prove Exercise 9.4, consider the functional

f0 : span
(
{x0}

⋃
M

)
→ K

defined by
f0(x0) = d(x0,M) ∧ f0|M = 0.

Then apply Theorem 9.2. ■

Proof of Question 16.5. Given a sequence (xn)n∈N satisfies the prop-
erty stated in this Question, consider the natural embedding ι : X →
X∗∗. Then for all f ∈ X∗:

lim
m,n
|x̂m(f)− x̂n(f)| = 0.

Since X is a reflexive space, we know X is a Banach space. Theorem 8.3
implies that (x̂n)n∈N

s−→ x̂ for some x̂ ∈ X∗∗. Clearly: in the space X∗∗,
strong convergence is equivalent to weak star convergence, and hence
we proved (x̂n)n∈N ⇀

∗ x̂ for some x ∈ X. Question 16.3 implies that it
suffices to show (xn)n∈N ⇀

∗ x for some x ∈ X, and

(xn)n∈N ⇀ x ⇐⇒ ∀f ∈ X∗ : f(xn)→ f(x)

⇐⇒ ∀f ∈ X∗ : x̂n(f)→ x̂(f)

⇐⇒ (x̂n)n∈N ⇀
∗ x̂.

16.2 Lecture 16-2
16.2.1 Exercise Course: Question Part

Question 16.6. Let H be a Hilbert space and (xn)n∈N be a sequence
of orthogonal vector, i.e. (xn, xm) = 0 when n ̸= m. Prove that the
following statements are equivalent:

1. the sequence (
∑n
j=1 xj)n∈N converges;

2. the sequence (
∑n
j=1 ⟨xj , y⟩)n∈N converges in K;

3. the sum
∑
n≥1∥xn∥

2 is finite.

Question 16.7. Give an example that a sequence is weakly∗ conver-
gent but not weakly convergent.

Page 187 of 198



16.2 Lecture 16-2 16 WEEK 16

Question 16.8. Let 1 < p <∞ and α = (αn)n∈N be a sequence in K.
If ∀x ∈ ℓq, we have

∑
n≥1 xnαn exists, show that α ∈ ℓp.

Question 16.9. Given α ∈ ℓ∞ and 1 ≤ p <∞. Define

Tα : ℓp → ℓp, x 7→ α · x.

Find ∥Tα∥.

Question 16.10. Let r, p, q be positive real numbers such that 1/r =
1/p+1/q and (Ω,Σ, µ) be a measure space. Let α ∈ Lq and defined an
operator

Tα : Lp → Lp, x 7→ α · x.
Show that ∥Tα∥ = ∥α∥q.

16.2.2 Exercise Course: Solution Part

Proof of Question 16.6. We have proved 1 ⇐⇒ 3. It suffices to
prove

1 ====⇒ 2 ====⇒ 3.

Define a sequence (sn)n∈N by sn :=
∑n
j=1 xj for all n ∈ N.

First, 1 ⇐⇒ 2. Let φH be the Riesz map. Suppose (sn)n∈N
converges, then

(

n∑
j=1

⟨xj , y⟩)n∈N = (⟨sn, y⟩)n∈N

converges, since ⟨ , y⟩ = φHy is a continuous functional.
Secondly, 2 =⇒ 3. The convergence implies that (sn)n∈N is weakly

bounded. Then the proof of Question 16.1, 2 =⇒ 3 works.
Another method for 2 =⇒ 3. This idea is similar to Question 3

Define a functional sequence (fn)n∈N as follows: for all n ∈ N,

fn : H → K, x 7→ ⟨x, sn⟩ .

Then fn = φHsn and hence ∥fn∥ = ∥sn∥ =
√∑n

j=1∥xj∥
2, by Theo-

rem 29. The sequence (
∑n
j=1 ⟨xj , y⟩)n∈N converges in K, and hence

is bounded, i.e. (fn)n∈N is bounded pointwisely. Thus Theorem 7.6
ensures that (fn)n∈N is uniformly bounded, i.e.

∞ > sup
n∈N
∥fn∥ =

(∑
n≥1

∥xn∥2
)1/2

.

Remark 16.4. Banach-Steinhaus Theorem 7.6 is important for 2 =⇒
3. Both of 2 methods need it. ■
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Proof of Question 16.7. See Example 29.

Proof of Question 16.8. See this.

Proof of Question 16.9. Clearly Tα ∈ L(ℓp), and Lemma 16.1 im-
plies that ∥Tα∥ ≤ ∥α∥∞. Consider (en)n∈N ⊆ ℓp, and we can see that

∥Tα(en)∥ = |αn|

for all n ∈ N. Since ∥en∥p = 1, we have

∀n ∈ N : ∥Tα∥ ≥ |αn|,

i.e. ∥Tα∥ ≥ ∥α∥∞.

Proof of Question 16.10. The boundedness of Tα is implied by the
following lemma.

Lemma 16.1. Given a measure space (Ω,Σ, µ), and p, q, r ∈ (0,∞]
such that 1/r = 1/p+1/q. For all f ∈ Lp and g ∈ Lq, we have fg ∈ Lr
and

∥fg∥r ≤ ∥f∥p∥g∥q.

The inequality comes to be a equality if and only if |f |p = |g|q almost
everywhere.

Lemma 16.1 can be proved by applying Hölder’s inequality to |f |r
and |g|r.

Consider ∥α∥q > 0, i.e. α ̸= 0 ∈ Lq. Notice the condition for
equality, and we consider the function α̃ := sign(α)|α|q/p ∈ Lp, then

Tα(α̃) = |α|p/q+1
.

Thus
∥Tα(α̃)∥r = ∥α∥

q/r
q ,

as you should verify. Furthermore, ∥α̃∥ = ∥α∥q/pq . Therefore

∥Tα∥ ≥ ∥Tα(α̃)∥r/∥α̃∥p = ∥α∥q.
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A Hamel Basis
Definition (Partial order, Partially ordered set). A binary relation on
X is called an partial order on X if it satisfies

1. x ≺ y ∧ y ≺ z =⇒ x ≺ z;

2. ∀x ∈ X x ≺ x;

3. x ≺ y ∧ y ≺ x =⇒ x = y.

A set with an order is called an partially ordered set.

Remark A.1. In fact, an order on X can be defined as a binary
relation, i.e. a subset of X ×X. But we don’t care this now.

Definition (Total order, Totally ordered set). An order is said to be
linear, if ∀x, y ∈ X(x ≺ y ∨ y ≺ x). A set with a linear order is called
a totally ordered set.

Definition (Bound, Bounded set, Maximal element). Let X be an
ordered set and Y ⊆ X. An element x ∈ X is called a bound for Y if
y ≺ x(∀y ∈ Y ) and at the same time Y is called a bounded set. An
element m ∈ X is called a maximal element if ∀y ∈ X¬(m ≺ y).

Axiom (Zorn’s lemma). Let X be an ordered set with the following
property: every totally ordered subset of X (in the sense of the order
induced by the initial order of X) is bounded. Then there is at least
one maximal element in X.

This is equivalent to the Axiom of Choice, which cannot be proved
from the other axioms of set theory. To define base, we need the notion
of linear independence.

Definition (Linearly Independent, Hamel Base). Let V be a linear
space over K. A system of vectors of V is called linearly independent
if every finite subsystem of this system is linearly independent (i.e.
every finite combination gives 0 if and only if all coefficients are 0).

A family of vectors {ei ∈ V : i ∈ I} is called a Hamel basis of
V , if ∀x ∈ V, x ̸= 0 can be uniquely represented as a (finite) linear
combination of vectors in {ei : i ∈ I}.

Theorem A.1 (Existence of Hamel base). Each linear space V (over
an arbitrary field) has a Hamel Base.

Proof. To use Zorn’s lemma, we need to construct an ordered set
whose maximal element can be a Hamel basis of V . Thus, consider

D := {X ⊆ V : X is linearly independent}
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with the order: ∀A,B ∈ D : A ≺ B ⇐⇒ A ⊆ B. Given an arbitrary
totally ordered set A ⊆ D, we have a bound for A, just

⋃
A. To

show that
⋃
A ∈ D, taking arbitrary e1, e2, . . . , en ∈

⋃
A such that

ej ∈ Xj ∈ A for all j = 1, 2, . . . , n. Since A is totally ordered, we can
suppose X1 ⊆ X2 ⊆ · · · ⊆ Xn and hence ej ∈ Xn(∀j = 1, 2, . . . , n).
Since Xn ∈ A ⊆ D, Xn is linear independent and hence e1, e2, . . . , en
is linearly independent. Therefore,

⋃
A ∈ D. Now apply Zorn’s lemma

and we know there is a maximal element B in D. And B is a Hamel
basis. To show this, it suffices to prove that every element in V lies
in span(B). If there is an element v ∈ V such that v /∈ span(B), i.e.
B ∪ {v} is linearly independent. This is impossible by the definition of
the maximal element.

In fact, we can define Hamel bases for an arbitrary linear space over
an arbitrary field such as Q and Fp for some prime p.

Here I explain why we can view a vector space over C as a vector
space over R.

Proposition A.2. Let V be a vector space over C, then there is a real
vector space W and a R-linear bijection φ : V →W .

Proof. Let {vα}α∈I be a base for V . Consider the set W := V × iV ,
where iV = {iv : v ∈ V } is equipped with the natural real linear
structure. Now I define a linear structure on W such that W is a
R-linear space. Then, define the mapping φ : V →W by

∀α ∈ I, ∀z ∈ C : φ(zvα) :=
(
Re(z)vα, Im(z)vα

)
.

Extend φ to V keeping R-linear. Then φ|Im(φ) is what we wanted.
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B Banach Functor
This appendix comes from [4].

Recall the exercise:

Exercise B.1. If Y is a Banach space and X is a linear normed space,
then B(X,Y ) is a Banach space. Especially, X∗ is a Banach space.

Proof. Let (un)n∈N ⊆ B(X,Y ) be a Cauchy sequence. Thus

lim
m,n
∥un − um∥B(X,Y ) = 0.

Taking an arbitrary x ∈ X, we have

∥unx− umx∥Y ≤ ∥(un − um)x∥Y
≤ ∥un − um∥B(X,Y )∥x∥X
→ 0(m,n→∞).

(40)

Therefore, (unx)n∈N is a Cauchy sequence in Y . Since Y is a Banach
space, we know (unx)n∈N converges to some point in Y . Thus we can
define a map

u : X → Y, x 7→ lim
n
un(x).

And now we prove that (un)n∈N → u in B(X,Y ). This proof is simi-
lar to the proof of “uniform limit of a continuous function sequence is
continuous”, see this proof.

By definition, ∀ε > 0∃N ∈ N such that ∀m,n ≥ N we have

∥un − um∥B(X,Y ) < ε,

which implies

∥unx− umx∥Y = ∥(un − um)x∥Y ≤ ε∥x∥,∀x ∈ X.

Let m→∞, by the continuity of ∥ ∥Y , we have

∥(un − u)x∥ = ∥unx− ux∥Y ≤ ε∥x∥,∀x ∈ X.

Therefore, ∥un − u∥ ≤ ε holds for all n > N . That is (un)n∈N → u.

Now we can define

Definition. The contravariant functor

∗ : Nor −→ Ban,
Ob(Nor) ∋ X 7−→ X∗,

Mor(Nor) ∋ φ : X1 → X2 7−→ φ∗ : X∗
2 → X∗

1 .

(41)

Where φ∗ : X∗
2 → X∗

1 , f 7→ f ◦ φ.
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Remark B.1. Banach Functor is a special case of the functor B( , Y )
where Y is a Banach space, defined as

B( , Y ) : Nor −→ Ban,
Ob(Nor) ∋ X 7−→ B(X,Y ),

Mor(Nor) ∋ φ : X1 → X2 7−→ B(φ, Y ) : B(X1, Y )→ B(X2, Y ).

Here B(φ, Y ) : B(X1, Y )→ B(X2, Y ), f 7→ f ◦ φ.

Banach functor is surely a functor.

Proof. It suffices to prove that (idX)∗ = idX∗ and (φ ◦ψ)∗ = ψ∗ ◦φ∗.
To prove two maps are the same, we should prove that they coincide
at every point.

• Given X ∈ Ob(Nor), we have

∀f ∈ X∗ : (idX)∗(f) = f ◦ idX = f = idX∗(f).

Thus (idX)∗ = idX∗ , since idX∗ is uniquely determined by this
property.

• Given X1
φ←− X2

ψ←− X3. Notice that dom((φ◦ψ)∗) = X∗
1 and for

any f ∈ X∗
1 , we have

(φ ◦ ψ)∗(f) = f ◦ (φ ◦ ψ)
= (f ◦ φ) ◦ ψ
=

(
φ∗(f)

)
◦ ψ

= ψ∗(φ∗(f)
)

= (ψ∗ ◦ φ∗)(f).

This means (φ ◦ ψ)∗ = ψ∗ ◦ φ∗.

Now, What is needed to check is just φ∗ ∈ B(X∗
2 , X

∗
1 ), and this is

true since ∀f ∈ X∗
2

∥φ∗(f)∥X∗
1
= ∥f ◦ φ∥B(X1,K) ≤ ∥f∥X∗

2
∥φ∥B(X1,X2)

,

hence ∥φ∗∥B(X∗
2 ,X

∗
1 )
≤ ∥φ∥B(X1,X2)

.

If we restrict ∗ : Nor→ Ban to the full subcategory Ban, and call it
Banach adjointness functor, then we can consider the composition
of ∗ : Ban → Ban, i.e. ∗∗ : Ban → Ban, which is covariant. On object,
X∗∗ is the usual second dual space; on morphism, T ∗∗ is the usual
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second dual operator. This is the main topic about “the dual theory of
Banach space”.

Similarly we can define a covariant functor

B(K, ) : Ban −→ Ban
X 7−→ B(K, X),

(f : X → Y ) 7−→ (B(K, f) : B(K, X)→ B(K, Y )),

where
B(K, f) : B(K, X)→ B(K, Y ), ψ 7→ f ◦ ψ.

Proposition B.1. Show that B(K, ) is naturally equivalent to idBan,
the identity functor of Ban.

Proof. Define the natural transformation θ = {θX : X ∈ Ob(Ban)} as
follows

θX : B(K, X)→ X,φ 7→ φ(1),

where 1 is just the multiplicative identity of K. We check that θX is a

• injection: ker θX = {0}. From definition: θX(φ) = 0 if and only
if φ(1) = 0, while φ ∈ B(K, X) so φ(1) = 0 if and only if φ = 0;

• surjection: Im θX = X. For arbitrary x ∈ X, define φx : K →
X, z 7→ zx . Then ∥φx∥ = ∥x∥ and θX(φx) = x as we want.
Furthermore, we know that θX keeps norms.

Thus θX is an isomorphism for each X ∈ Ob(Ban).
Then we check that the following diagram commutes

B(K, X) idBan(X) X

B(K, Y ) idBan(Y ) Y

B(K,f) idBan(f) f

Given φ ∈ B(X,C), on the one hand

(f ◦ θX)(φ) = f
(
θX(φ)

)
= f

(
φ(1)

)
.

On the other hand(
θY ◦ B(f,K)

)
(φ) = θY

((
B(f,K)

)
(φ)

)
= θY (f ◦ φ) = (f ◦ φ)(1).

We’re done since f(φ(1)) = (f ◦ φ)(1).
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Remark B.2. The definition of θX is natural since this is the simplest
element of B(B(K, X), X).

Now we explain the reason of name “Natural Embedding”, whose
definition can be found here. To view this better, we should view the
“Biduality” as a functor, which can be defined as a composition of a
functor.

Definition. Let C1, C2, C3 be three categories and F : C → D, G : D →
E are two functors. The composition functor of F and G, denoted by
G ◦ F is defined as follows.

G ◦ F : C1 −→ C3,
Ob(C1) ∋ A 7→ G

(
F (A)

)
,

Mor(C1) ∋ φ : X → Y 7→ G
(
F (φ)

)
: G

(
F (X)

)
→ G

(
F (Y )

)
.

Thus the bidual functor ∗∗ is just the composition of ∗ : Nor→ Ban
and itself (more precisely, ∗∗ := ∗ ◦ ι ◦ ∗ , where ι : Ban → Nor is the
identity functor that keeps everything the same). Here is a easy exercise
that ensures something like

(
X∗∗)∗ =

(
X∗)∗∗.

Exercise B.2. Show that the composition of functor is associative.

Now we explain the name of “Natural Embedding”. For convenience,
here we view ∗∗ as a functor from Nor to itself.

Proposition B.2. Consider the category Nor and two functors

∗∗ : Nor → Nor,
id : Nor → Nor,

where id is idNor for short. Then the family of natural embedding

{ιX : X → X∗∗, x 7→ x̂ | X ∈ Ob(Nor)}

is a natural transformation from id to ∗∗.

Proof. See Corollary 11.2.
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C Uniqueness of Completion
To ensure the uniqueness of completion, we need to look at the defini-
tion of completion.

Definition. A completion of a linear normed space is a pair (X̂, ι) such
that X̂ is a Banach space and ι : X ↪→ X̂ keeps norms with a dense
image.

Theorem C.1 (Uniqueness of completion). The completion of a linear
normed space X is unique up to an unique isometry (that conincides
with the two inclusions). That is, if X̂, Y with isometric inclusion
map ι, ι′ respectively are completions of X, then the following diagram
commutes

X

X̂ Y

ι ι′

∃φ

Proof. Consider the corestriction of ι, that is ι0 := ι|ι(X). Clearly ι0
is an isometry from X to ι(X)(which is dense in X̂). Now we define a
map φ0 by the following diagram (i.e. φ0 := ι′ ◦ (ι0)−1 )

X

ι(X) Y

ι′

φ0

(ι0)
−1

Now φ0 is linear and keeps norm. Since ι(X) is dense in X̂, Y is
complete and φ0 is continuous (φ0 keeps norm and hence is continuous),
we can extend φ0 to a continuous map φ : X̂ → Y (see this exercise, to
prove which, it suffices to displace X0,K with ι(X), Y respectively).

To show that φ is an isometry, we should show that:

1. φ is linear;

2. φ keeps norm.

3. φ is surjective;

First, φ is linear. We have proved this in the exercise.
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Second, φ keeps norm. ι(X) is dense in X̂, so ∀x ∈ X̂, ∃(xn)n∈N ⊆
ι(X) such that (xn)n∈N → x. Then

∥x∥ =
∥∥∥lim
n
xn

∥∥∥
= lim

n
∥xn∥ (continuity of ∥ ∥)

= lim
n
∥φ0(xn)∥ (φ0 is an isometry)

= lim
n
∥φ(xn)∥ (φ|ι(X) = φ0)

=
∥∥∥lim
n
φ(xn)

∥∥∥ (continuity of ∥ ∥)

= ∥φ(x)∥ (continuity of φ).

Thirdly, φ is surjective. ∀y ∈ Y , by the density of ι′(X), ∃(yn)n∈N ⊆
ι′(X) such that (yn)n∈N → y. And ∀n ∈ N, let xn := φ−1

0 (yn) then
(xn)n∈N ⊆ ι(X) ⊆ X̂ is well-defined and Cauchy ( since (yn)n∈N is
Cauchy and φ keeps norm). Now

y = lim
n
yn = lim

n
φ(xn) = φ(lim

n
xn) = φ(x).

The last equality used the completeness of X̂. Therefore, φ is surjective.
Above all, φ is an isometry. If there is another isometry ϕ : X̂ → Y

such that the diagram commutes, then φ|ι(X) = ϕ|ι(X) = φ0. Then φ

and ϕ conincide on a dense subset of X̂ and hence φ = ϕ.

In fact, a completion of a linear normed space is a final object of
some category and hence is unique up to a unique isomorphism, see [4,
Theorem 2.6.1].
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