

Quotient Category and Sub-Category

Start with homotopy category

Hao Fan

Undergraduate
Mathematics and Applied mathematics, T-2001

Course Report, March 2023

Table of Contents

1 Quotient Category

2 Sub-Category

Recall

We have studied a special category (hTop), defined as follows:

$$\text{Ob}(\text{hTop}) := \text{Ob}(\text{Top}),$$

$$\text{Hom}_{(\text{hTop})}(X, Y) := \text{Hom}_{(\text{Top})}(X, Y)/\simeq,$$

where \simeq satisfies:

$$f_0 \simeq f_1, g_0 \simeq g_1 \implies g_0 \circ f_0 \simeq g_1 \circ f_1.$$

Table of Contents

1 Quotient Category

2 Sub-Category

Quotient Category

As a generalization of (hTop):

Definition

Let a category \mathcal{C} and (a family of) equivalence relations $\stackrel{A,B}{\sim}$ on each set $\text{Hom}_{\mathcal{C}}(A, B)$, where $A, B \in \text{Ob}(\mathcal{C})$ be given. We define the **quotient category** w.r.t \sim , denoted by \mathcal{C}/\sim , as follows:

$$\text{Ob}(\mathcal{C}/\sim) := \text{Ob}(\mathcal{C}),$$

$$\text{Hom}_{\mathcal{C}/\sim}(A, B) := \text{Hom}_{\mathcal{C}}(A, B)/\stackrel{A,B}{\sim},$$

where \simeq satisfies: $f_0 \simeq f_1, g_0 \simeq g_1 \implies g_0 \circ f_0 \simeq g_1 \circ f_1$. It has the identity automatically and the associativity holds.

Quotient Category

Remark

There is a “natural” full functor: $Q: \mathcal{C} \rightarrow \mathcal{C}/\sim$.

Quotient Category

Remark

There is a “natural” full functor: $Q: \mathcal{C} \rightarrow \mathcal{C}/\sim$.

Corollary

If $A \cong B$ in the category \mathcal{C} , then $A \cong B$ in \mathcal{C}/\sim .

Examples of Quotient Categories

Example

The category $(hTop) = (Top)/\simeq$, where \simeq is the homotopy relation.

Example

The category $(\text{Lin}_{\mathbb{C}})$, with equivalence relations \sim defined as follows: for $f, g \in \mathcal{L}(X, Y)$, $f \sim g \iff \exists k \in \mathbb{C} \setminus \{0\}$ such that $f = kg$. Then we have a quotient category $(\text{Lin}_{\mathbb{C}})/\sim$.

Table of Contents

1 Quotient Category

2 Sub-Category

Sub-Category

Definition

Let a category \mathcal{C} be given. If another category \mathcal{C}' satisfies:

- ① $\text{Ob}(\mathcal{C}') \subseteq \text{Ob}(\mathcal{C})$;
- ② $\forall A, B \in \text{Ob}(\mathcal{C}') : \mathcal{C}'(A, B) := \text{Hom}_{\mathcal{C}'}(A, B) \subseteq \mathcal{C}(A, B)$;

Sub-Category

Definition

Let a category \mathcal{C} be given. If another category \mathcal{C}' satisfies:

- ① $\text{Ob}(\mathcal{C}') \subseteq \text{Ob}(\mathcal{C})$;
- ② $\forall A, B \in \text{Ob}(\mathcal{C}') : \mathcal{C}'(A, B) := \text{Hom}_{\mathcal{C}'}(A, B) \subseteq \mathcal{C}(A, B)$;
- ③ compositions in \mathcal{C}' are birestrictions of compositions in \mathcal{C} , i.e. the following diagram commutes;

$$\begin{array}{ccc} \mathcal{C}'(A, B) \times \mathcal{C}'(B, C) & \longrightarrow & \mathcal{C}'(A, C) \\ \downarrow & & \downarrow \\ \mathcal{C}(A, B) \times \mathcal{C}(B, C) & \longrightarrow & \mathcal{C}(A, C) \end{array}$$

- ④ $\forall A \in \text{Ob}(\mathcal{C}')$, the identity map of A (in \mathcal{C}), i.e. $1_A^{\mathcal{C}}$ lies in $\mathcal{C}'(A, A)$;
- then we say \mathcal{C}' is a **sub-category** of \mathcal{C} , denoted by $\mathcal{C}' \subseteq \mathcal{C}$.

Sub-Category

Remark

To describe a sub-category of \mathcal{C} , it suffices to tell its object class and morphism sets. Since all the others are determined by \mathcal{C} .

Sub-Category

Remark

To describe a sub-category of \mathcal{C} , it suffices to tell its object class and morphism sets. Since all the others are determined by \mathcal{C} .

Remark

There is a “natural” faithful functor $I: \mathcal{C}' \rightarrow \mathcal{C}$.

Sub-Category

Remark

To describe a sub-category of \mathcal{C} , it suffices to tell its object class and morphism sets. Since all the others are determined by \mathcal{C} .

Remark

There is a “natural” faithful functor $I: \mathcal{C}' \rightarrow \mathcal{C}$.

Corollary

If $A \cong B$ in the category \mathcal{C}' , then $A \cong B$ in \mathcal{C} .

Sub-Category

Remark

To describe a sub-category of \mathcal{C} , it suffices to tell its object class and morphism sets. Since all the others are determined by \mathcal{C} .

Remark

There is a “natural” faithful functor $I: \mathcal{C}' \rightarrow \mathcal{C}$.

Corollary

If $A \cong B$ in the category \mathcal{C}' , then $A \cong B$ in \mathcal{C} .

Definition

A sub-category is said to be **full**, if the functor $I: \mathcal{C}' \rightarrow \mathcal{C}$ is full.

Sub-Category

The following are sub-categories relevant to our familiar categories:

Sub-Category

The following are sub-categories relevant to our familiar categories:

Examples

- ① $(\text{FinSet}) \subseteq (\text{Set})$, it is full;

Sub-Category

The following are sub-categories relevant to our familiar categories:

Examples

- ① $(\text{FinSet}) \subseteq (\text{Set})$, it is full;
- ② $(\text{FinLin}_{\mathbb{C}}) \subseteq (\text{Lin}_{\mathbb{C}})$, it is full;

Sub-Category

The following are sub-categories relevant to our familiar categories:

Examples

- ① $(\text{FinSet}) \subseteq (\text{Set})$, it is full;
- ② $(\text{FinLin}_{\mathbb{C}}) \subseteq (\text{Lin}_{\mathbb{C}})$, it is full;
- ③ $(\text{Ab}) \subseteq (\text{Grp})$, it is full;

Sub-Category

The following are sub-categories relevant to our familiar categories:

Examples

- ① $(\text{FinSet}) \subseteq (\text{Set})$, it is full;
- ② $(\text{FinLin}_{\mathbb{C}}) \subseteq (\text{Lin}_{\mathbb{C}})$, it is full;
- ③ $(\text{Ab}) \subseteq (\text{Grp})$, it is full;
- ④ $(\text{Haus}) \subseteq (\text{Top})$, it is full;

Sub-Category

Example

Let a fixed category \mathcal{C} satisfying $\text{Aut}(X_0, Y_0) \neq \text{Hom}(X_0, Y_0)$ for some $X_0, Y_0 \in \text{Ob}(\mathcal{C})$ be given. Consider the sub-category $B\mathcal{C}$ defined as follows:

$$\text{Ob}(B\mathcal{C}) := \text{Ob}(\mathcal{C}), \text{Hom}_{B\mathcal{C}}(X, Y) := \text{Isom}_{\mathcal{C}}(X, Y).$$

Then this is a sub-category that is **not** full.

