

Introduction to de Rham Cohomology Theory

Zihao Huang¹ Hao Fan²

¹Undergraduate
Mathematics and Applied mathematics, T-2001

²Undergraduate
Mathematics and Applied mathematics, T-2001

Final Report, May 2023

Outline

- 1 Motivation and Background
- 2 Differential Forms and De Rham Cohomology
- 3 Examples and Results

Table of Contents

1 Motivation and Background

2 Differential Forms and De Rham Cohomology

3 Examples and Results

Why de Rham Cohomology?

- Gives the name “differential” for (co)homology;

Why de Rham Cohomology?

- Gives the name “differential” for (co)homology;
- Connects calculus, algebra and topology;

Why de Rham Cohomology?

- Gives the name “differential” for (co)homology;
- Connects calculus, algebra and topology;
- De Rham cohomology is a powerful tool for studying smooth manifolds.

Calculus

[MT97, Chapter 1]. Fix an open set $U \subseteq \mathbb{R}^2$, and let $C^\infty(U, \mathbb{R}^k)$ denote the set of smooth functions from U to \mathbb{R}^k .

Definition (Gradient, Rotation)

For $F \in C^\infty(U, \mathbb{R})$ and $(F_1, F_2) \in C^\infty(U, \mathbb{R}^2)$, we define

$$\text{grad } F := (D_1 F, D_2 F), \text{rot}(F_1, F_2) := D_1 F_2 - D_2 F_1.$$

Calculus

[MT97, Chapter 1]. Fix an open set $U \subseteq \mathbb{R}^2$, and let $C^\infty(U, \mathbb{R}^k)$ denote the set of smooth functions from U to \mathbb{R}^k .

Definition (Gradient, Rotation)

For $F \in C^\infty(U, \mathbb{R})$ and $(F_1, F_2) \in C^\infty(U, \mathbb{R}^2)$, we define

$$\text{grad } F := (D_1 F, D_2 F), \text{rot}(F_1, F_2) := D_1 F_2 - D_2 F_1.$$

It follows that

Proposition

We have $\text{rot} \circ \text{grad} = 0$, and the following complex.

$$C^\infty(U, \mathbb{R}) \xrightarrow{\text{grad}} C^\infty(U, \mathbb{R}^2) \xrightarrow{\text{rot}} C^\infty(U, \mathbb{R}) \longrightarrow 0.$$

Definition

The first homology group is the quotient group is defined as follows:

$$H_{dR}^1(U) := \ker(\text{rot}) / \text{Im}(\text{grad}).$$

Theorem

For a star-shaped open set $U \subseteq \mathbb{R}^2$, we have $H_{dR}^1(U) = 0$.

Sketch of Proof.

WLOG, let U be star-shaped with respect to 0. Let $\text{rot}(f_1, f_2) = 0$. The function

$$F(x_1, x_2) := \int_0^1 x_1 f_1(tx_1, tx_2) + x_2 f_2(tx_1, tx_2) dt$$

satisfies $D_1 F = f_1, D_2 F = f_2$ whenever $D_2 f_1 = D_1 f_2$. Therefore, $\text{grad } F = (f_1, f_2)$ and hence $\text{Im}(\text{grad}) = \ker(\text{rot})$. □

Remark

It is not very simple to find other $H_{dR}^1(U)$, even $U = \mathbb{R}^2 \setminus \{0\}$.

Definition

For $k \geq 1$ and an open subset $U \subseteq \mathbb{R}^k$, we define

$$H_{dR}^0(U) := \ker(\text{grad}).$$

We will show that it counts the connected components of U (equivalently, path-connected components, since \mathbb{R}^n is locally path-connected).

Remark

It is not very simple to find other $H_{dR}^1(U)$, even $U = \mathbb{R}^2 \setminus \{0\}$.

Definition

For $k \geq 1$ and an open subset $U \subseteq \mathbb{R}^k$, we define

$$H_{dR}^0(U) := \ker(\text{grad}).$$

We will show that it counts the connected components of U (equivalently, path-connected components, since \mathbb{R}^n is locally path-connected).

Theorem

For an open subset $U \subseteq \mathbb{R}^k$, $H_{dR}^0(U) = \mathbb{R}$ iff U is connected.

Proof.

Sufficiency: we want $f \in H_{dR}^0(U)$ to be just c_f , where c_f is a constant for each f . Each $x_0 \in U$, there is an open neighbourhood $V(x_0)$ of x_0 such that $f = f(x_0)$ on $V(x_0)$. Then the set

$$\{x \in U \mid f(x) = f(x_0)\} = f^{-1}(f(x_0))$$

is closed, since f is continuous. It is also open since $V(x_0) \subseteq U$. Now we prove what we wanted. Connectivity of U means that f is constant.

Necessity: if U is not connected, we can take $f: U \rightarrow \{0, 1\}$ that is smooth and surjective. Then $\dim H_{dR}^0(U) > 1$.

There are relevant results, such as [Rot88, Exercise 12.2].

Exercise

If $\{X_\lambda : \lambda \in \Lambda\}$ is the set of path components of X , prove that, for every $n \geq 0$,

$$H^n(X; G) \cong \prod_{\lambda} H^n(X_\lambda; G).$$

There are relevant results, such as [Rot88, Exercise 12.2].

Exercise

If $\{X_\lambda : \lambda \in \Lambda\}$ is the set of path components of X , prove that, for every $n \geq 0$,

$$H^n(X; G) \cong \prod_{\lambda} H^n(X_\lambda; G).$$

Similarly

Corollary

For open set $U \subseteq \mathbb{R}^k$, we have $H_{dR}^0(U) = \prod_{\pi_0(U)} \mathbb{R}$.

Table of Contents

1 Motivation and Background

2 Differential Forms and De Rham Cohomology

3 Examples and Results

Differential Forms

Let x_1, \dots, x_n be the linear coordinates on \mathbb{R}^n . Then for any fixed point $p \in \mathbb{R}^n$, we can define n linear map

$$\begin{aligned}\partial/\partial x_i : C_p^\infty &\rightarrow \mathbb{R} \\ f &\mapsto D_i f|_p.\end{aligned}$$

The linear space spanned by $\{\partial/\partial x_i\}$ over \mathbb{R} is denoted $T_p(\mathbb{R}^n)$, which is called the tangent space. The dual space $T_p^*(\mathbb{R}^n)$ is called the cotangent space. Let $\{dx_i\}$ to be the dual basis of $\{\partial/\partial x_i\}$.

For every fixed integer $1 \leq q \leq n$, let $\Omega^q(\mathbb{R}^n)$ to be the free-module of ring $C^\infty(\mathbb{R}^n)$ with the basis

$$\{dx_{i_1} \dots dx_{i_q} \mid 1 \leq i_1 < i_2 < \dots < i_q \leq n\}.$$

Every element in $\Omega^q(\mathbb{R}^n)$ has the form

$$\sum_{1 \leq i_1 < i_2 < \dots < i_q \leq n} f_{i_1 \dots i_q} dx_{i_1} \dots dx_{i_q},$$

where $f_{i_1 \dots i_q} \in C^\infty(\mathbb{R}^n)$, we call it the C^∞ q -form.

Remark

We define $\Omega^0(\mathbb{R}^n) = C^\infty(\mathbb{R}^n)$.

Define $\Omega^* = \bigoplus \Omega^q(\mathbb{R}^n)$, then Ω^* is also a $C^\infty(\mathbb{R}^n)$ -module. Define a multiple operation on Ω^* as usual sense but with relation:

$$\begin{cases} (dx_i)^2 = 0 \\ dx_i dx_j = -dx_j dx_i, i \neq j. \end{cases}$$

There is a differential operator

$$d : \Omega^q(\mathbb{R}^n) \rightarrow \Omega^{q+1}(\mathbb{R}^n)$$

defined as follows:

- ① If $f \in \Omega^0(\mathbb{R}^n)$, then $df = \sum D_i f \, dx_i$;
- ② If $\omega = \sum f_i dx_i$, then $d\omega = \sum df_i dx_i$.

Example

In the case \mathbb{R}^2 : let $\omega_0 = f$ $\omega_1 = Pdx + Qdy$ and $\omega_2 = Fdxdy$. We have

$$d\omega_0 = D_1 f dx + D_2 f dy,$$

$$\begin{aligned} d\omega_1 &= (D_1 P dx + D_2 P dy) \wedge dx + (D_1 Q dx + D_2 Q dy) \wedge dy \\ &= (D_1 Q - D_2 P) dx dy. \end{aligned}$$

$$d\omega_2 = 0.$$

Proposition

We have $d \circ d = 0$ and hence a chain complex:

$$\begin{array}{ccccccc} \Omega^0(\mathbb{R}^n) & \longrightarrow & \Omega^1(\mathbb{R}^n) & \longrightarrow & \cdots & & \\ & & \searrow & & & & \\ & & \Omega^{n-1}(\mathbb{R}^n) & \longrightarrow & \Omega^n(\mathbb{R}^n) & \longrightarrow & 0 \end{array}$$

The de Rham Complex

Example

Here is the de Rham complex of \mathbb{R}^2 , isomorphic to the lower complex mentioned before:

$$\begin{array}{ccccccc} \Omega^0(\mathbb{R}^2) & \xrightarrow{d} & \Omega^1(\mathbb{R}^2) & \xrightarrow{d} & \Omega^2(\mathbb{R}^2) & \xrightarrow{d} & 0 \\ \parallel \sim & & \parallel \sim & & \parallel \sim & & . \\ C^\infty(\mathbb{R}^2, \mathbb{R}) & \xrightarrow{\text{grad}} & C^\infty(\mathbb{R}^2, \mathbb{R}^2) & \xrightarrow{\text{rot}} & C^\infty(\mathbb{R}^2, \mathbb{R}) & \longrightarrow & 0 \end{array}$$

Example (continued)

Here isomorphisms are

$$\begin{array}{ccc} f & F_1 dx + F_2 dy & F dx dy \\ \downarrow & \downarrow & \downarrow \\ f & (F_1, F_2) & F \end{array} .$$

And d 's are

$$f \longmapsto D_1 f dx + D_2 f dy, F_1 dx + F_2 dy \longmapsto (D_1 F_2 - D_2 F_1) dx dy.$$

De Rham Cohomology Groups

As we define homology groups of a complex:

Definition

The *de Rham cohomology groups* $H_{dR}^k(M)$ of a smooth manifold M are the quotient groups

$$H_{dR}^k(M) = \frac{\ker(d : \Omega^k(M) \rightarrow \Omega^{k+1}(M))}{\text{Im}(d : \Omega^{k-1}(M) \rightarrow \Omega^k(M))}.$$

Remark

The element of $\ker(d : \Omega^k(M) \rightarrow \Omega^{k+1}(M))$ is called the *closed k-form*.
The element of $\text{Im}(d : \Omega^{k-1}(M) \rightarrow \Omega^k(M))$ is called the *exact k-form*.

Table of Contents

1 Motivation and Background

2 Differential Forms and De Rham Cohomology

3 Examples and Results

Examples

Example

For any smooth manifold M ,

$$H_{dR}^0(M) \cong \mathbb{R}^k$$

where $k := \#\pi_0(M)$ is the number of connected (equivalently, path-connected) components of M .

It generalizes the corollary mentioned before:

Corollary

For open set $U \subseteq \mathbb{R}^k$, we have $H_{dR}^0(U) = \prod_{\pi_0(U)} \mathbb{R}$.

The Poincaré Lemma

Theorem (Poincaré's Lemma)

Let $U \subseteq \mathbb{R}^n$ be a star-shaped open set. Then

$$H_{dR}^k(U) = \begin{cases} \mathbb{R} & \text{if } k = 0 \\ 0 & \text{if } k > 0 \end{cases}$$

The Poincaré Lemma

Theorem (Poincaré's Lemma)

Let $U \subseteq \mathbb{R}^n$ be a star-shaped open set. Then

$$H_{dR}^k(U) = \begin{cases} \mathbb{R} & \text{if } k = 0 \\ 0 & \text{if } k > 0 \end{cases}$$

Example

Let $n \geq 1$ be fixed. For \mathbb{R}^n , we have

$$H_{dR}^k(\mathbb{R}^n) = \begin{cases} \mathbb{R} & \text{if } k = 0 \\ 0 & \text{if } k > 0 \end{cases}$$

The case $k = 0$ follows from the previous example and the case $(k, n) = (1, 2)$ was proved in Section 1. General proof can be founded in [MT97, Theorem 3.15].

De Rham's Theorem

Theorem (De Rham)

Let (M) be the category of smooth, connected, orientable manifolds with smooth maps. There is a natural isomorphism:

$$\begin{array}{ccc}
 & H_{dR}^k & \\
 (M) & \Downarrow \theta & (Ab) \\
 & H_{sing}^k &
 \end{array}$$

- Connects de Rham cohomology to classical cohomology.
- Gives an interpretation of why de Rham cohomology is a topological invariant.

Other Important Results

- *Functoriality of Ω^** : in fact, we have a contravariant functor Ω^* from the category (SmoothEuclid) to (ComDiffAlg). [BT13, Chapter 1.2]
- *Mayer-Vietoris sequence* for de Rham cohomology, which contributes one way to calculate homology groups of the punctured plane $\mathbb{R}^2 \setminus \{0\}$, spheres and so on. [MT97, Chapter 6].
- De Rham cohomology with *compact supports*. [BT13, Chapter 1.1]
- De Rham cohomology *ring*: $H^\bullet(M) := \bigoplus_{k \in \mathbb{Z}} H^k(M)$ is naturally a commutative graded ring (w.r.t the wedge product as a special case of cup product). e.g., $H^\bullet(\mathbb{R}^2 \setminus \{0\}) \cong \mathbb{R}[X]/(X^2)$. [Mun18, Chapter 5]

Thank you!

References

- [BT13] Raoul Bott and Loring W. Tu. *Differential Forms in Algebraic Topology*. New York: Springer-Verlag, 2013.
- [MT97] Ib H Madsen and Jørgen Tornehave. *From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes*. Cambridge University Press, 1997.
- [Mun18] J.R. Munkres. *Elements Of Algebraic Topology*. CRC Press, 2018.
- [Rot88] Joseph J. Rotman. *An Introduction to Algebraic Topology*. New York: Springer-Verlag, 1988.